K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

1/ Txđ của cả 2 hàm số trên là: D = R
Ta thấy: x thuộc D và - x cũng thuộc D
y = sin x - cos x = f(x)
Ta có: f(-x) = sin (-x) - cos (-x) = - sin x - cos x
=> Hàm số này không chẵn cũng không lẻ

2/ -Tập xác định:D=R => tập xác dịnh là tập đối xứng 
-với mỗi x thuộc D thì -x thuộc D 
-xét trường hợp: 
+ f(-x)=f(x) => hàm chẵn 
+ f(-x)=-f(x) => hàm lẻ 
+còn lại là hàm số lhông chẵn không lẽ 
trường hợp trên là hàm không chẵn không lẻ

28 tháng 8 2016

2/ cụ thể ra sao ạ

 

Cho hàm số \(y = \tan x\)a) Xét tính chẵn, lẻ của hàm sốb) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).      \(x\)     \( - \frac{\pi }{3}\)     \( - \frac{\pi }{4}\)      \( - \frac{\pi }{6}\)0\(\frac{\pi }{6}\)\(\frac{\pi }{4}\)\(\frac{\pi }{3}\)\(y = \tan x\)???????Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi...
Đọc tiếp

Cho hàm số \(y = \tan x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

      \(x\)

     \( - \frac{\pi }{3}\)

     \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(y = \tan x\)

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = \pi \), ta được đồ thị của hàm số \(y = \tan x\) như hình dưới đây.

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số \(y = \tan x\).

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) =  - \tan x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \tan x\) là hàm số lẻ.

b)

    \(x\)

     \( - \frac{\pi }{3}\)

      \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

     \(0\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

  \(\tan x\)

\( - \sqrt 3 \)

   \( - 1\)

      \( - \frac{{\sqrt 3 }}{3}\)

     \(0\)

\(\frac{{\sqrt 3 }}{3}\)

      \(1\)

\(\sqrt 3 \)

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cot \left( { - x} \right) =  - \cot x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \cot x\) là hàm số lẻ.

b)

   \(x\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

  \(\cot x\)

  \(\sqrt 3 \)

    \(1\)

\(\frac{{\sqrt 3 }}{3}\)

     \(0\)

      \( - \frac{{\sqrt 3 }}{3}\)

    \( - 1\)

\( - \sqrt 3 \)

 c) Từ đồ thị trên, ta thấy hàm số \(y = \cot x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right)\).

25 tháng 8 2016

Xét tính chẵn lẻ:

a) TXĐ: D = R \ {π/2 + kπ| k nguyên}

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

 

25 tháng 8 2016

Tìm GTLN, GTNN:

TXĐ: D = R

a)  Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)

Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)

\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)

Vậy  \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

b) Với mọi x thuộc D ta có: 

\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)

\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)

Vậy\(Min_{f\left(x\right)}=5\)  khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)

\(Max_{f\left(x\right)}=\sqrt{5}+4\)  khi \(\cos x=1\Leftrightarrow x=k2\pi\)

c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)

Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p

5 tháng 9 2016

a) y = \(f\left(x\right)=cos\left(x-\frac{\pi}{4}\right)\) không phải là hàm số chẵn , không phải là hàm số lẻ , vì chẳng hạn \(f\left(\frac{3\pi}{4}\right)=0\) ; \(f\left(-\frac{3\pi}{4}\right)=-1\)

b) y = tan|x| có tập xác định  D1 \(=R\backslash\left\{\frac{\pi}{2}+k\pi\left|k\in Z\right|\right\}\) và với mọi x \(\in\) D1 thì - x \(\in\) D1 và tan|-x| = tan|x| nên hàm số chẵn

c) y = tanx - sin2x có tập xác định D1 và với mọi x \(\in\) D1 thì - x \(\in\) D1 và tan(-x) - sin2(-x) = -(tanx - sin2x ) nên hàm số lẻ