1, 3x = 4y và 2x + 3y = 34
2, 4x = 5y và 2x - 3y = 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3x-y=13\) và \(2x-4y=60\)
Mà: \(2\left(x+2y\right)=60\Rightarrow x+2y=30\) (1)
Và: \(3x-y=13\Rightarrow6x-2y=26\) (2)
Cộng (1) với (2) theo vế ta có:
\(\left(x+6x\right)+\left(-2y+2y\right)=30+26\)
\(\Rightarrow7x=56\)
\(\Rightarrow x=8\)
Ta tìm được y:
\(8+2y=30\)
\(\Rightarrow2y=22\)
\(\Rightarrow y=11\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
a, \(2x^2+3\left(x+1\right)\left(x-1\right)-5x\left(x+1\right)\)
\(=2x^2+3\left(x^2-1\right)-5x^2-5x\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=\left(2x^2+3x^2-5x^2\right)-3-5x\)
\(=-\left(5x+3\right)\)
b, \(\left(4x+3y\right)\left(2x-5y\right)-\left(2x+6y\right)\left(3x-5y\right)\)
\(=8x^2-20xy+6xy-\left(15y^2-6x^2-10xy-18xy-30y^2\right)\)
\(=8x^2-20xy+6xy-15y^2+6x^2+10xy+18xy+30y^2\)
\(=\left(8x^2+6x^2\right)+\left(-20xy+6xy+10xy+18xy\right)+\left(-15y^2+30y^2\right)\)
\(=14x^2+14xy+15y^2\)
\(=14x.\left(x+y\right)+15y^2\)
Chúc bạn học tốt!!!
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
1 ) \(3x=4y=\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất của dảy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{2x+3y}{2.4+3.3}=\frac{34}{17}=2\)
\(\Rightarrow\begin{cases}\frac{x}{4}=2\Rightarrow x=8\\\frac{y}{3}=2\Rightarrow y=6\end{cases}\)
Vậy \(x=8;y=6\)
2 ) \(4x=5y=\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{2x-3y}{2.5-3.4}=\frac{35}{-2}\)
\(\Rightarrow\begin{cases}\frac{x}{5}=\frac{35}{-2}\Rightarrow x=-\frac{175}{2}\\\frac{x}{4}=\frac{35}{-2}\Rightarrow x=-70\end{cases}\)
Vậy ..............
Bài 1:
3x=4y và 2x+3y=34
\(\Rightarrow\frac{x}{4}=\frac{y}{3}\) và 2x+3y=34
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{2x+3y}{2.4+3.3}=\frac{34}{17}=2\)
Vậy x=8 và y=6
Bài 2:
4x=5y và 2x-3y=35
\(\Rightarrow\frac{x}{5}=\frac{y}{4}\) và 2x-3y=35
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{2x-3y}{2.5-3.4}=\frac{35}{-2}\)
Vậy \(x=-\frac{175}{2};y=-70\)
^...^ ^_^