K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Ta có:\(\left|x-7\right|\ge0\)  

Nếu \(\left|x-7\right|=0\Rightarrow x=7\)

Suy ra: A = -1

Nếu \(\left|x-7\right|\ge1\Rightarrow x\ge6\)

Suy ra: A > 1

Vậy MinA = -1 khi x = 7

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

6 tháng 6 2015

A = |x - 3| + |x - 5| + |x-7| có GTNN

<=> Mỗi số hạng trong tổng trên có GTNN.

Vì giá trị tuyệt đối của 1 số \(\ge\) 0 nên xét các trường hợp :

- Với |x - 3| có GTNN <=> |x - 3| = 0 => x = 3. Do đó |x - 5| = |3 - 5| = 2 ; |x - 7| = |3 - 7| = 4

.Khi đó A = 0 + 2 + 4 = 6

- Với |x - 5| vó GTNN <=> |x - 5| = 0 => x = 5. Do đó |x - 3| = |5 - 3| = 2 ; |x - 7| = |5 - 7| = 2

. Khi đó A = 0 + 2 + 2 = 4

- Với |x - 7| có GTNN <=> |x - 7| = 0 => x = 7. Do đó |x - 3| = |7 - 3| = 4 ; |x - 5| = |7 - 5| = 2

Khi đó A = 0 + 4 + 2 = 6

  Trong các trường hợp trên, chọn GTNN của A là 4.

                                  Vậy x = 5 thì A có GTNN 

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2021+|x-2023|=|x-2021|+|2023-x|\geq |x-2021+2023-x|=2$

$|x-2022|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2021+|x-2022|+|x-2023|\geq 2+0=2$
Vậy gtnn của biểu thức là $2$. Giá trị này đạt được khi:

$(x-2021)(2023-x)\geq 0$ và $x-2022=0$

$\Leftrightarrow x=2022$

24 tháng 10 2017

k tớ trc ik tớ lm cho *hỳ hỳ*

23 tháng 7 2018

1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)

Dấu bằng xảy ra khi: |x| = 0 <=> x = 0

Vậy Amin = -2 khi và chỉ khi x = 0

2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8

Vậy Bmin = 3/4 khi và chỉ khi x = 8

3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)

Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6

25 tháng 7 2018

mai tuấn kiệt ok

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

20 tháng 12 2018

GTNN của biểu thức là 1945

20 tháng 12 2018

Trình bày ra bạn j đó ơi =-='

16 tháng 8 2017

nothing. 

16 tháng 8 2017

- Với \(x\ge7\) thì \(x-7\ge0\Rightarrow\left|x-7\right|=x-7\), thay vào A ta có:

\(A=x-7+6-x=-1\) (1)

- Với x < 7 thì x - 7 < 0 => |x - 7| = 7 - x, thay vào A ta có:

A = 7 - x + 6 - x = -2x + 13

Vì x < 7 nên -2x > -14 => -2x + 13 > -1 hay A > -1 (2)

Từ (1) và (2) => \(A\ge-1\)

Vậy GTNN của A = -1 khi x \(\ge\) 7