Chứng tỏ rằng
A =1+3+3^2+3^3+...+3^2014
A không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+33+34+...+3100
\(\Rightarrow3A=3^2+3^3+3^5+...+3^{101}\)
\(\Rightarrow3A-A=2A=3^{101}-3\)
\(\Rightarrow A=\left(3^{101}-3\right):2\)
\(\Rightarrow A=\left(3^{4.25}.3^1-3\right):2\)
\(\Rightarrow A=\left[\left(...1\right).3-3\right]:2\)
\(A=\left[\left(...3\right)-3\right]:2\)
\(A=\left(...0\right):2=...5\)cũng có thể là số chính phương chứ ?
A=3+32+33+34+...+3100
=3+32(1+3+32+...+398)
=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9
=>A không phải số chính phương
=>đpcm
A=3+32+33+34+...+3100
=3+32(1+3+32+...+398)
=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9
=>A không phải số chính phương
=>đpcm
bài này trong tương tự ấy
Bạn nguyen hai dang làm đúng, tuy nhiên cô giải thích thêm. Ta có tính chất: Nếu A là số chính phương mà a chia hết 3 thì A phải chia hết 9.
Ở đây ta thấy ngay \(A=3\left(1+3+3^2+...+3^{199}\right)\) chia hết 3.
Tuy nhiên \(A=3+3^2\left(1+3+3^2+...+3^{198}\right)\) chia 9 dư 3.
Vậy nên A không thể là số chính phương.
ta có A chia hết cho 3
mà A chia 9 dư 3 nên A không chia hết cho 9 nên A không là số chính phương
Ta có :
3A=3+32+.................+32015
3A-A hay 2A=32015+...........+3-1+........+32014
2A=32015-1
Ta có cứ số mũ 30 0 chia 4 dư 0
và có tận cùng = 1
31 1 chia 4 dư 1
có tận cùng = 3
32 2 chia 4 dư 2 có tận cùng = 9
33 3 chia 4 dư 3 có tận cùng = 7
Từ đó ta suy ra được
3n nếu n chia 4 dư 0 thì có tận cùng =1
n chia 4 dư 1 có tận cùng = 3
4 dư 2 có tận cùng =9
4 dư 3 có tận cùng =7
bạn hiểu tại sao mk lấy 4 ko vì cứ qua 4 thừa số thì cs tận cùng lại lặp lại 1 lần
Ta có 2015 chia 4 dư 3 Vậy 32015 có tận cùng = 7
Và hiệu 7-1=6 vậy 32015-1 có tận cùng = 6
Ta có nếu cs hàng chục là số lẻ thì cs tận cùng = 8
còn th kia thì có khả năng tận cùng = 3
Trong 2 TH kia thì tận cùng có khả năng =3;8
Ko có số chính phương nào có tận cùng bằng 3;8
Suy ra 1+3+..........+32014 không phải số chính phương
Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:
+, 3^4k = ...1
+, 3^(4k+1) = ....3
+, 3^(4k+2)=....9
+, 3^(4k+3) = ....7
Một số cphương thì ko có tận cùng là 2,3,7,8
Suy ra ta phân tích A như sau:
A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)
Suy ra c/s tận cùng của A chính là c/s tận cùng của:
1.101+3.101+9.101+7.100=2013
Suy ra A có c/s tận cùng là 3
Suy ra A ko phải số cphương
3A = 3^2 + 3^3 + 3^4 + ... + 3^101
3A - A = ( 3^2 + 3^3 + 3^4 + ... + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^100 )
2A = 3^101 - 3
A = 3^101 - 3 / 2
Xét 3^101 :
Ta có tích 5 số 3 đầu tiên có tận cùng là 3
4 số 3 tiếp theo lại tiếp tục cho ta một số có tận cùng là 3 ( vì đã có số 3 rồi nên ta không tốn thêm 1 số để làm chữ số đầu )
....
Vì ( 101 - 5 ) : 4 = 24 ( không dư ) nến 3^101 có tận cùng là 3
....3 - 3 = ...0
=> 3^101 - 3 có tận cùng là 0
=> 3^101 - 3 /2 có tận cùng là 5 .