Chứng minh rằng \(\left(5n+2\right)^2-4\) chia hết cho 5 với mọi số nguyên n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮⋮ 5 nên 5n(5n + 4) ⋮⋮ 5 ∀n ∈ Z.
\((5n + 2)^2 - 4\) \(= (5n +2 )^2 - 2^2\)
\(= (5n +2 - 2) (5n + 2 + 2 )\)
\(= 5n(5n + 4)\)
\(\Rightarrow\) \(5\) \(⋮\) \(5\) nên \(5n(5n +4)\) \(⋮\) \(5\) với mọi số nguyên thuộc \(n\)
Vậy biểu thức \((5n + 2)^2 - 4\) chia hết cho \(5\) với mọi số nguyên thuộc \(n\)
Ta có:
(5n + 2)2 – 4
= (5n + 2)2 – 22
= (5n + 2 – 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.
Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ
Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)
\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)
\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)
(5n + 2)2 - 4 = 10n + 4 - 4 = 10n chia hết cho 5 với mọi số nguyên
(5n +2)x2-4=5nx2+2x2-4
= 10n + 4-4
= 10n + 0
= 10n ; 10n chia hết cho 5
vậy vs mọi n thì (5n+2)2-4 chia hết cho 5
ủng hộ nhé
Ta có: \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
\(=25n^2+20n\)
Nx: \(25n^2⋮5\)với mọi \(n\inℤ\)
\(20n⋮5\)với mọi \(n\inℤ\)
\(\Rightarrow25n^2+20n⋮5\)với mọi \(n\inℤ\)
Vậy \(\left(5n+2\right)^2-4⋮5\)với mọi số nguyên n
\(\left(5n+2\right)^2-4=25n^2+10n+4-4=25n^2+10n\)
-Mà: \(\hept{\begin{cases}25n^2⋮5\\10n⋮5\end{cases}}\Rightarrowđpcm\)
Ta có : (5n + 2)2 – 4
= 25n2 + 20n + 4 - 4
= 25n2 + 20n
= 5(5n2 + 4n) chia hết cho 5
Ta có \(\left(5n+2\right)^2-4\)
=\(25n^2+20n+4-4\)
=\(25n^2+20n\)
=\(5\left(5n^2+4n\right)⋮5\)
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.
a, (n+3)2-(n-1)2
= n2+6n+9-n2+2n-1
= 8n + 8
= 8(n+1) chia hết cho 8
Ta có : \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right).\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)
(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4
= 25n^2 + 20n = 5n(5n + 4)
--> (52+2)^2 - 4 = 5n(5n + 4)
Mà 5 chia hết cho 5
-->5n(5n + 4) chia hết cho 5