Rút gọn:
a) ( 3x + 4 )^2 - 10x - ( x - 4 )( x + 4 )
b) ( x + 1 )( x - 2 )( x^2 + 1 )( x + 2 )(x -1 )( x^2 + 4 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\left(4-x\right)\left(16+4x+x^2\right)-\left(4-x\right)^3\)
\(=64-x^3+\left(x-4\right)^3\)
\(=64-x^3+x^3-12x^2+48x-64\)
\(=-12x^2+48x\)
b) Ta có: \(B=\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(=27x^3+8-27x^3+8\)
=16
c) Ta có: \(C=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)^2\)
\(=x^3+1-x\left(x^2+2x+1\right)\)
\(=x^3+1-x^3-2x^2-x\)
\(=-2x^2-x+1\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
\(a,=6x^2-4x-x^2-4x-4=5x^2-8x-4\\ b,=x^3+8-2\left(1-x^2\right)=x^3+8-2+2x^2=x^3+2x^2+6\\ c,=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\\ =\left(2x+1-2x+1\right)^2=4\)
Có thể giúp mình thực hiện cách chi tiết ko ạ ? Gv dạy mik ko hiểu mấy
a: \(=x^2+2x-8-x^2-2x-1=-9\)
b: \(=\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Lời giải:
1.
$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$
$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$
2.
$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$
$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$
$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$
3.
$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$
$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$
$=6x-12=6.1-12=-6$
4.
$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$
$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$
$=4x-5=4(-1)-5=-9$
\(A=\dfrac{x}{x-2}-\dfrac{x^2+x-2}{x^2-4}=\dfrac{x^2+2x-x^2-x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
\(A=\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\left(x\ne\pm2\right).\)
\(A=\dfrac{x}{x-2}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}-\dfrac{x-1}{x-2}=\dfrac{x-x+1}{x-2}=\dfrac{1}{x-2.}\)
a) \(A=\left(5-x\right)\left(5+x\right)-x\left(4-x\right)-25\\ =25-x^2-4x+x^2-25\\ =-4x\)
b) \(B=\left(x^2+1\right)\left(x+1\right)-\left(x+1\right)^3\\ =x^3+x+x^2+1-x^3-3x^2-3x-1\\ =-2x^2-2x\)
c) \(\left(x+y-2\right)^2-2\left(x+y-2\right)\left(y+x\right)+\left(x+y\right)^2\)
\(=x^2+y^2+4+2xy-4y-4x-2\left(xy+y^2-2y+x^2+xy-2x\right)+x^2+2xy+y^2\)
\(=x^2+y^2+4+2xy-4y-4x-2\left(2xy+y^2-2y+x^2-2x\right)+x^2+2xy+y^2\)
\(=x^2+y^2+4+2xy-4y-4x-4xy-2y^2+4y-2x^2+4x+x^2+2xy+y^2\)
\(=4\)
a) \(A=\left(5-x\right)\left(5+x\right)-x\left(4-x\right)-25=25-x^2-4x+x^2-25=-4x\)b) \(B=\left(x^2+1\right)\left(x+1\right)-\left(x+1\right)^3=\left(x+1\right)\left[x^2+1-\left(x+1\right)^2\right]=\left(x+1\right)\left(x^2+1-x^2-2x-1\right)=\left(x+1\right)\left(-2x\right)\)c) \(C=\left(x+y-2\right)^2-2\left(x+y-2\right)\left(y+x\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
Bài 2:
a) \(=x^2-36y^2\)
b) \(=x^3-8\)
Bài 3:
a) \(=x^2+2x+1-x^2+2x-1-3x^2+3=-3x^2+4x+3\)
b) \(=6\left(x-1\right)\left(x+1\right)=6x^2-6\)
\(A=\dfrac{3x}{x-2}\cdot\sqrt{x^2-4x+4}\)
\(=\dfrac{3x}{x-2}\cdot\left(x-2\right)\)
=3x
\(B=\dfrac{-5y}{x+3}\cdot\sqrt{x^2+6x+9}\)
\(=\dfrac{-5y}{x+3}\cdot\left|x+3\right|\)
\(=\pm5y\)
a)(3x+4)2-10x-(x-4)(x+4)
9x2+24x+16-10x-x2+16
8x2+14x+32
b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)
(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)
(x2-1)(x2-4)(7x2+4)
(-3x2+4)(7x2+4)
-21x2-12x2+28x2+16
16-x2
a)(3x+4)2-10x-(x-4)(x+4)
9x2+24x+16-10x-x2+16
8x2+14x+32
b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)
(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)
(x2-1)(x2-4)(7x2+4)
(-3x2+4)(7x2+4)
-21x2-12x2+28x2+16
16-x2