Khi chia số tự nhiên a cho 7 ; 14 ; 49 thì định các số đủ là 4 11 ; 46 . Tìm số a đó ( a nhỏ nhất )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
a chia 7 dư 5 suy ra (a-5) chia hết cho 7 suy ra (a+2) chia hết cho 7
a chia 13 dư 11 suy ra (a+11) chia hết cho 13 suy ra (a+2) chia hết cho 13
suy ra (a+2) thuộc BC(7,13)
Vì ƯCLN(7,13)=1 suy ra BCNN(7,13)=91
suy ra +2 chia hết cho 91
suy ra a chia 91 -2=89
Vậy a chia 91 dư 89
a là BCNN của 3/5 và 10/7 tức là a(BCNN) của 5 và 10
a = 10
a chia 3/5 thuộc N=)3a chia hết cho 5=)30a chia hết cho 50
a chia 10/7 thuộc N=)10a chia hết cho 7=)30a chia hết cho 21
=)30a chia hết cho BCNN(50,21)
=)30a chia hết cho 1050
=)a chia hết cho 350
mà a nhỏ nhất =)a=350
Đáp án cần chọn là: D
Vì a chia cho 7 dư 4⇒(a+3)⋮7
a chia cho 9 dư 6 ⇒(a+3)⋮9
Do đó (a+3)∈BC(7,9) mà BCNN(7,9)=63.
Do đó (a+3)⋮63⇒a chia cho 63 dư 60.