K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 8 2021

\(f\left(x\right)=-x^3-2x^2+mx-3\)

\(f'\left(x\right)=-3x^2-4x+m\)

\(f'\left(x\right)>0\Leftrightarrow-3x^2-4x+m>0\Leftrightarrow m>3x^2+4x\)(đúng với mọi \(x\in\left(0,1\right)\))

suy ra \(m\ge max\left(3x^2+4x\right)\)với \(x\in\left[0,1\right]\).

Xét hàm \(g\left(x\right)=3x^2+4x\)với \(x\in\left[0,1\right]\).

\(g'\left(x\right)=6x+4\)

\(g'\left(x\right)=0\Leftrightarrow6x+4=0\Leftrightarrow x=-\frac{2}{3}\notin\left[0,1\right]\).

\(g\left(0\right)=0,g\left(1\right)=7\)

suy ra \(g_{max}=7\)

do đó \(m\ge7\).

Mà \(m\)nguyên, \(m\in\left[-2021,2021\right]\)nên có tổng cộng: \(2021-7+1=2015\)giá trị của \(m\)thỏa mãn. 

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số

3 tháng 8 2018

Đáp án C

22 tháng 12 2019

4 tháng 3 2018

 

Chọn D.

Phương pháp:

 

2 tháng 11 2018

9 tháng 6 2019