K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

Ta có vecto MM' + vecto MA = vecto MB

=> MM'BA là hình bình hành

vì A , B cố định => vecto AB cố định

xét phép tịnh tiến qua vecto AB biến M => M'

=> vecto MM' = vecto AB

=> M' là ảnh của M 

Mặt khác điểm M chạy trên đường tròn (O) nên M' sẽ chạy trên đường tròn (O') là ảnh của 

(O) thông qua phép tịnh tiến vecto AB

Vậy quỹ tích M' là đường tròn (O')

6 tháng 6 2018

ta có : \(\overrightarrow{MM'}+\overrightarrow{MA}=\overrightarrow{MB}\Leftrightarrow\overrightarrow{MM'}=\overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{AB}\)

\(M\in\left(O\right)\Rightarrow M'\in\left(O'\right)\) với \(\left(O'\right)=T_{\overrightarrow{AB}}\left(O\right)\)

vậy tập hợp điểm \(M\) là đường tròn \(\left(O'\right)\) với \(\left(O'\right)\) là ảnh của đường tròn \(\left(O\right)\) qua \(T_{\overrightarrow{AB}}\)

14 tháng 4 2016

-  Giả sử ta lấy điểm M trên (O;R). Theo giả thiết , thì M’ là ảnh của M qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\). Nhưng do M chạy trên (O;R) cho nên M’ chạy trên đường tròn ảnh của (O;R) qua phép tịnh tiến . Mặt khác M’ chạy trên (O’;R’) vì thế M’ là giao của đường tròn ảnh với đường tròn (O’;R’).

- Tương tự : Nếu lấy M’ thuộc đường tròn (O’;R’) thì ta tìm được N trên (O;R) là giao của (O;R) với đường tròn ảnh của (O’;R’) qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\)

- Số nghiệm hình bằng số các giao điểm của hai đường tròn ảnh với hai đường tròn đã cho . 

NV
8 tháng 9 2021

Chắc đề là: \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=a\) ?

\(\left|\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right|=a\)

\(\Leftrightarrow\left|4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=a\)

\(\Leftrightarrow4\left|\overrightarrow{MO}\right|=a\)

\(\Leftrightarrow MO=\dfrac{a}{4}\)

Tập hợp M là đường tròn tâm O bán kính \(\dfrac{a}{4}\)

\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)

=>vecto MA=0 hoặc M là trọng tâm của ΔABC

=>M là trọng tâm của ΔABC hoặc M trùng với A

14 tháng 4 2016

Vì : \(\overrightarrow{MN}=\overrightarrow{OA}\Rightarrow T_{\overrightarrow{OA}}:M\rightarrow N\). Do đó N nằm trên đường tròn ảnh của (O;R) . Mặt khác N lại nằm trên (O’;R’) do đó N là giao của đường tròn ảnh với với (O’;R’) . Từ đó suy ra cách tìm :

- Vè đường tròn tâm A bán kính R , đường tròn náy cắt (O’;R’) tại N

- Kẻ đường thẳng d qua N và song song với OA , suy ra d cắt (O;R) tại M