Với x>0. GTNN của A= \(\frac{\left(x+6\right)\left(x+19\right)}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
\(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\frac{\left(x+\frac{1}{x}\right)^6-\left[\left(x^3\right)^2+2x^3\cdot\frac{1}{x^3}+\left(\frac{1}{x^3}\right)^2\right]}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\frac{\left[\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\right]\left[\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)\right]}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)\ge\left(2\sqrt{x\cdot\frac{1}{x}}\right)^3+2\sqrt{x^3\cdot\frac{1}{x^3}}=8+2=10\)
Dấu "=" khi x = 1
Ta có : \(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}-2\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3\left(x+\frac{1}{x}\right)\ge6\) \(\left(x>0\right)\).
Vậy \(P_{Min}=6\) khi \(x=1.\)
Happy New year :)
Áp dụng BĐT Cauchy :
\(\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\ge2\sqrt{x.\frac{144}{x}}+25=49\)
Đẳng thức xảy ra khi \(x=12\)
Vậy ...............................................
Cách làm của bạn Hoàng Lê Bảo Ngọc nha bạn
Mình chắc chắn luôn
Thank you
Ta có :
\(P=\frac{\left(x+\frac{1}{x}^6\right)-\left(x^6+\frac{1}{x}^6\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x}^3\right)\)
\(=3\left(x+\frac{1}{x}\right)\ge6\left(x>0\right)\)
\(\Rightarrow Pmin=6\Leftrightarrow x=1\)
\(A=\frac{\left(x+4\right)\left(x+9\right)}{x}\left(x>0\right)\)
\(\Leftrightarrow Ax=x^2+13x+36\)
\(\Leftrightarrow x^2+x\left(13-A\right)+36=0\left(1\right)\)
Đế pt có nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow\left(13-A\right)^2-4.36\ge0\)
\(\Leftrightarrow\left(13-A\right)^2-12^2\ge0\)
\(\Leftrightarrow\left(13-A-12\right)\left(13-A+12\right)\ge0\)
\(\Leftrightarrow\left(1-A\right)\left(25-A\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}A\le1\\A\ge25\end{cases}}\)
Với \(A=25\) ta tìm được \(x=6\)
Vậy GTNN của A là 25 khi \(x=6\)
Chúc bạn học tốt !!!
a/ Đặt: \(x+\frac{1}{x}=a\)
Ta có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=a^3-3a\)
\(x^6+\frac{1}{x^6}=\left(x^3+\frac{1}{x^3}\right)^2-2=\left(\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)\right)^2-2\)
\(=\left(a^3-3a\right)^2-2\)
\(\Rightarrow M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\frac{a^6-\left(a^3-3a\right)^2+2-2}{a^3+a^3-3a}\)
\(=\frac{\left(a^3+a^3-3a\right)\left(a^3-a^3+3a\right)}{\left(a^3+a^3-3a\right)}=3a\)
\(=3.\left(x+\frac{1}{x}\right)=\frac{3x^2+3}{x}\)
b/ \(\frac{3x^2+3}{x}=3x+\frac{3}{x}\ge2.3=6\)
Đấu = xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)
Khai triển và biến đổi, áp dụng bđt Cô-si ta được
\(H = \dfrac{x^2 + ab + (a+b)x}x \\= x +\dfrac{ab}x + (a+b) \geqslant 2\sqrt{x \cdot \dfrac{ab}x} + (a+b) \\= 2\sqrt{ab} + (a+b) = (\sqrt{a}+\sqrt{b})^2\)