1. Cho tam giác ABC có góc B=70 độ, AB=3,2 ; BC=6,2. Tính AC.
2. Cho tam giác ABC có : BC=9, góc B = 60 độ, góc C= 40 độ. Tính AB, AC.
Cảm ơn các bạn trước nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)
\(\Leftrightarrow48,68-AC^2=13,57\)
hay \(AC=5,93\left(cm\right)\)
\(A=180^0-\left(B+C\right)=70^0\)
\(\Rightarrow A=B\Rightarrow\Delta ABC\) cân tại C
\(\Rightarrow BC=AC=10\left(cm\right)\)
Kẻ đường cao CH \(\Rightarrow\) H đồng thời là trung điểm AB
Trong tam giác vuông ACH:
\(cosA=\dfrac{AH}{AC}\Rightarrow AH=AC.cosA=10.cos70^0\approx3,42\left(cm\right)\)
\(AB=2AH\approx6,84\left(cm\right)\)
b. Cũng trong tam giác vuông ACH:
\(sinA=\dfrac{CH}{AC}\Rightarrow CH=AC.sinA=10.sin70^0\approx9,4\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}CH.AB\approx32,15\left(cm^2\right)\)
\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)
A B C D E F
Xét t/giác DEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-70^0-60^0=50^0\)
Xét t/giác ABC và t/giác DEF
có: AB = DE (gt)
AC = DF (gt)
\(\widehat{A}=\widehat{D}=50^0\)
=> t/giác ABC = t/giác DEF (c.g.c)
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi
1.
Kẻ đường cao CH
Xét tam giác vuông HCB,ta có:
góc B + góc C1 =900
600 + góc C1 =900
=> góc C1 = 300 => góc C2 =100
Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:
HB= BC x cot góc B = 9 x cot 600 = 3√3 (cm)
=>HC=BC2 - HB2 =92 - (3√3)2 = 3√6 (cm) (Đinh lí Py-ta-go)
AH= HC x tan góc C2 = 3√6 x tan 100 =1,3 (cm)
Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)
AC = AH : sin góc C2 = 7,49 (cm)
Vậy AB = 6,49 cm ; AC = 7,49 cm
2.
Kẻ đường cao AH.
Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:
BH = AB x cos góc B = 3,2 x cos 700 = 1,09 (cm)
AH= BH x tan góc B =1,09 x tan 700 = 2,99 (cm)
Ta có : BC - BH = HC
=> HC = 6,2 - 2,99 = 3,21 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:
AC2 = AH2 +HC2 = (2,99)2 +(3,21)2 =>AC= 4,39 (cm)
Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha