K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

Trả lời:

\(\left(-3xy^4+\frac{1}{2}x^2y^2\right)^3\)

\(=\left(-3xy^4\right)^3+3.\left(-3xy^4\right)^2.\frac{1}{2}x^2y^2+3.\left(-3xy^4\right)\left(\frac{1}{2}x^2y^2\right)^2+\left(\frac{1}{2}x^2y^2\right)^3\)

\(=-27x^3y^{12}+3.9x^2y^8.\frac{1}{2}x^2y^2+3.\left(-3xy^4\right).\frac{1}{4}x^4y^4+\frac{1}{8}x^6y^6\)

\(=-27x^3y^{12}+\frac{27}{2}x^4y^{10}-\frac{9}{4}x^5y^8+\frac{1}{8}x^6y^6\)

2 tháng 8 2021
Ccfahcfgdufyghjknbgjvffsyy
20 tháng 6 2023

\(1,=3x^2-6x+x-2=3x^2-5x-2\\ 2,??\\ 3,=3x^3y^2:3xy+6x^2y^3:3xy-12xy^4:3xy=x^2y+2xy^2-4y^3\\ 4,=3x^3y^2:4xy+6x^2y^3:4xy-12xy^4:4xy\\ =\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-3x^3\\ 5,\left(2x^3-5x^2+7x-6\right):\left(2x-3\right)=x^2-x+2\\ 6,\left(x^4-x^3+3x^2+x+2\right):\left(x^2-1\right)=x^2-x+4\left(dư6\right)\) 

1: =3x^2+x-6x-2=3x^2-5x-2

3: =x^2y+2xy^2-4y^3

4: =3/4x^2y+3/2xy^2-3y^3

5: \(=\dfrac{2x^3-3x^2-2x^2+3x+4x-6}{2x-3}=x^2-x+2\)

27 tháng 10 2018

x 3 y 3 - 1 / 2   x 2 y 3 - x 3 y 2 : 1 / 3   x 2 y 2 = x 3 y 3 : 1 / 3   x 2 y 2 + - 1 / 2   x 2 y 3 : 1 / 3   x 2 y 2 + - x 3 y 2 : 1 / 3   x 2 y 2 = 3 x y - 3 / 2   - 3 x

3 tháng 8 2021
=3xy-3/2-3x
AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:

$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$

$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$

a: \(=-6x^5y^6z\)

Bậc là 12

b: \(75x^2y^2+25x^2y^2=100x^2y^2\)

 

19 tháng 9 2018

Chọn B

3 tháng 8 2021
B:x2y2+5-1,3y2
2 tháng 3 2023

\(x^2y^2-x^2-3y^2-2x-1=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)

Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.

Đặt \(x^2-3=a^2\) (a là số tự nhiên).

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)

Ta có x+a>x-a. Lập bảng:

x+a3-1
x-a1-3
x2-2

Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)

Với \(x=-2\)\(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)

Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)

 

5 tháng 7 2019

7 tháng 7 2023

a) \(2x^2y+\dfrac{2}{3}x^2y+\left(-\dfrac{1}{3}\right)x^2y\)

\(=\left(2+\dfrac{2}{3}+-\dfrac{1}{3}\right)x^2y\)

\(=\dfrac{7}{3}x^2y\)

b) \(2x^2y^2+3x^2y^2+x^2y^2\)

\(=\left(2+3+1\right)x^2y^2\)

\(=6x^2y^2\)