K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

(mx - 2)*(2mx - x + 1) = 0 
tương đương với tuyển hai pt: 
*mx - 2 = 0 (a) 
+nếu m = 0: (a) vô nghiệm 
+nếu m # 0: (a) có nghiệm x = 2 / m. 
*2mx - x + 1 = 0 
<=>(2m - 1)x + 1 = 0 (b) 
+nếu m = 1 / 2: (b) vô nghiệm 
+nếu m # 1/2: (b) có nghiệm x = -1 / (2m - 1) 
*xét 2 / m = -1 /(2m - 1) 
<=> m = 2 / 5. 
Kết luận: 
+nếu m = 0 => S = {1} (lấy được nghiệm của b) 
+nếu m = 1 / 2 => S = {4} 
+nếu m = 2 / 5 => S = {5} 
+nếu m # 0; m # 1 /2 và m # 2 / 5 => S = {2/m , -1 /(2m-1)} 

23 tháng 8 2016

ừ hiểu rồi c.ơn nha

(mx-2)(2mx-x+1)=0

=>\(x^2\cdot2m^2-mx^2+mx-4mx+2x-2=0\)

=>\(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)

TH1: m=0

Phương trình sẽ trở thành: \(0x^2+x\cdot\left(-3\cdot0+2\right)-2=0\)

=>2x-2=0

=>x=1

TH2: m=1/2

Phương trình sẽ trở thành: \(0x^2+x\left(-3\cdot\dfrac{1}{2}+2\right)-2=0\)

=>1/2x-2=0

=>x=4

TH3: \(m\notin\left\{0;\dfrac{1}{2}\right\}\)

Phương trình sẽ là \(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)

\(\text{Δ}=\left(-3m+2\right)^2-4\left(2m^2-m\right)\cdot\left(-2\right)\)

\(=9m^2-12m+4+8\left(2m^2-m\right)\)

\(=9m^2-12m+4+16m^2-8m\)

\(=25m^2-20m+4=\left(5m-2\right)^2\)>=0 với mọi m

Phương trình sẽ có hai nghiệm phân biệt khi 5m-2<>0

=>m<>2/5

Phương trình sẽ có nghiệm kép khi 5m-2=0

=>\(m=\dfrac{2}{5}\)

9 tháng 12 2021

Với \(m=0\)

\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)

PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)

16 tháng 1 2021

\(\left(x+1\right)\left(mx-3\right)=0\)

\(TC:\)

\(\left(+\right)x+1=0\Leftrightarrow x=-1\)

\(\left(+\right)mx-3=0\left(1\right)\)

\(BL:\)

\(\left(-\right)Với:m=0\\ \left(1\right)\Leftrightarrow0x-3=0\\ \Rightarrow PTVN\)

 \(\left(-\right)Với:m\ne0\\ \left(1\right)\Leftrightarrow mx-3=0\\ \Leftrightarrow x=\dfrac{3}{m}\)

 

có: \(\left(x+1\right).\left(mx-3\right)=0\) 

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\mx-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0-1=-1\\mx=0+3=3\end{matrix}\right.\) 

Có x= -1 nên mx = (-3).(-1) => m= -3

Vậy x=-1 và m = -3

1 tháng 1 2022

đề là như thế này à \(\left(m+1\right)x^2-2mx=m+5x-2\)

1 tháng 1 2022

\(\left(m+1\right)x^2-2mx=m+5x-2\\ \Leftrightarrow\left(m+1\right)x^2-2mx-m-5x+2=0\\ \Leftrightarrow\left(m+1\right)x^2-\left(2m+5\right)x+2-m=0\)

Ta có:\(\Delta=\left[-\left(2m+5\right)\right]^2-4\left(m+1\right)\left(2-m\right)\)

              \(=\left(2m+5\right)^2-4\left(-m^2+m+2\right)\\ =4m^2+20m+25+4m^2-4m-8\\ =8m^2+16m+17\)

Để pt có 2 nghiệm phân biệt thì Δ>0 hay:

\(8m^2+16m+17>0\Rightarrow x\in R\)

Để phương trình có nghiệm kép thì Δ=0 hay:

\(8m^2+16m+17=0\Rightarrow x\in\varnothing\)

Để phương trình vô nghiệm thì Δ<0 hay:

\(8m^2+16m+17< 0\Rightarrow x\in\varnothing\)

14 tháng 8 2015

a) Thay m = 1 vào hệ ta được hê phương trình:

-2x + y = 5

x + 3y = 1

=> -2x+ y = 5

2x + 6y = 2

Cộng từng vế của pt ta được:

7y = 7 => y = 1 => x = -2

Vậy (x;y) = (-2;1)

b) Từ PT thứ nhất trong hệ => y = 2mx + 5. Thế vapf PT thứ hai ta được: mx + 3. (2mx +5) = 1

<=> 7mx = -14 <=> mx = -2   (*)

+) Nếu  m \(\ne\) 0  <=> (*) có nghiệm là  x = -2/m => y =  1 

Khi đó,  hệ có nghiệm là (-2/m; 1)

+) Nếu m = 0 thì (*) <=> 0 = -2 Vô lí => (*) vô nghiệm <=> Hệ vô nghiệm

Vậy.................

c) Với m \(\ne\) 0 thì hệ có nghiệm x = -2/m và y = 1 

Để x - y = 2 <=>( -2/m )- 1  = 2 <=> (-2/m) = 3 <=> m = -2/3 ( Thỏa mãn)

Vậy...................