Tìm các góc của tứ giác ABCD biết 4 góc ấy tỉ lệ với:6,9,10,11
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Có một tứ giác có tổng các góc bằng 360 độ
Theo đề bài có: \(\frac{\widehat{A}}{6}=\frac{\widehat{B}}{9}=\frac{\widehat{C}}{10}=\frac{\widehat{D}}{11}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{6+9+10+11}=\frac{360^o}{36}=10^o\)
\(\begin{cases}\widehat{\frac{A}{6}=10^o\Rightarrow\widehat{A}=60^o}\\\widehat{\frac{B}{9}=10^o\Rightarrow\widehat{B}=90^o}\\\widehat{\frac{C}{10}=10^o\Rightarrow\widehat{C}=100^o}\\\widehat{\frac{D}{11}=10^o\Rightarrow\widehat{D}=110^o}\end{cases}\)
Vì 4 góc của tứ giác ABCD tỉ lệ với 6,9,10,11
\(\Rightarrow\frac{A}{6}=\frac{B}{9}=\frac{C}{10}=\frac{D}{11}\)
Mà A+B+C+D=3600(Theo Định lý)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{A}{6}=\frac{B}{9}=\frac{C}{10}=\frac{D}{11}=\frac{A+B+C+D}{6+9+10+11}=\frac{360^0}{36}=10^0\)
\(\Rightarrow\begin{cases}\frac{A}{1}=10^0\\\frac{B}{9}=10^0\\\frac{C}{10}=10^0\\\frac{D}{11}=10^0\end{cases}\)\(\Rightarrow\begin{cases}A=60^0\\B=90^0\\C=100^0\\D=110^0\end{cases}\)
Vậy A=600;B=900;C=1000D=1100