Cho một hình lăng trụ đứng có 5 cm,đáy là một tam giác vuông có 2 cạnh góc vuông lần lượt là 2cm,3cm.Tính diện tích xung quanh của hình lăng trụ đứng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong \(\Delta\)ABC vuông tại A theo định lí Pitago ta có ;
\(CB=\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh của lăng trụ :
(3 + 4 + 5).6 = 72(cm2)
b) Diện tích mặt đáy là :
\(\frac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
Thể tích của lăng trụ là:
6 x 6 = 36(cm2)
a)
Chu vi đáy hình lăng trụ đứng đó là:
4+5+6=15 (cm)
Diện tích xung quanh hình lăng trụ đứng đó là:
Sxq = 15.10 = 150 (cm2 )
b)
Chu vi đáy là: 8+18+13+13 = 52 (cm)
Diện tích đáy là: Sđáy = (8+18).12:2 = 156 (cm2)
Diện tích toàn phần của lăng trụ đó là:
Stp = Sxq + 2. Sđáy = 52. 20 +2. 156 = 1352 (cm2)
a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2
Bình phương cạnh huyền của đáy là: \(6^2+8^2=100\)
\(\Rightarrow\) Cạnh huyền của đáy là \(10\left(cm\right)\)
Diện tích xung quanh lăng trụ là: \(\left(6+8+10\right).3=72\left(cm^2\right)\)
Diện tích đáy lăng trụ là: \(\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
Thể tích lăng trụ là: \(24.3=72\left(cm^3\right)\)
Bình phương cạnh huyền của đáy là: \(6^2+8^2=100\)
\(\Rightarrow\)Cạnh huyền của đáy là \(10\left(cm\right)\)
Diện tích xung quanh của lăng trụ là: \(\left(6+8+10\right)\times3=72\left(cm^2\right)\)
Diện tích đáy là: \(\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
Thể tích lăng trụ là: \(24.3=72\left(cm^3\right)\)
Áp dụng định lí Py - Ta - Go , độ dài cạnh còn lại của mặt đáy tam giác là :
\(\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh hình lăng trụ đứng :
\(S_{xq}=\left(3+4+5\right).8=96\left(cm^2\right)\)
Diện tích toàn phần :
\(S_{tp}=96+\left(3.4\right)=108\left(cm^2\right)\)
Thể tích :
\(V=\dfrac{3.4}{2}.8=48\left(cm^3\right)\)
\(S_{XQ}=\left(5+12+13\right)\cdot8=8\cdot26=204\left(cm^2\right)\)
\(S_{TP}=204+2\cdot5\cdot12\cdot2=204+4\cdot60=204+240=444\left(cm^2\right)\)
\(V=5\cdot12\cdot8=60\cdot8=480\left(cm^3\right)\)