Giai phuong trinh sau :
c ) \(\left(2-x\right)\left(2x-1\right)+\left(4x^2-4x+1\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT>=0 suy ra 4x>=0
suy ra x>=0
..................................................................................................
Do : VP ≥ 0
=> VT ≥ 0
=> 4x ≥ 0
=> x ≥ 0
nên Phương trình trên có dạng :
x + 2 + x + 9 + x + 2011 = 4x
<=> 3x + 2022 = 4x
<=> x = 2022 ( thỏa mãn )
KL....
\(\frac{15}{2}\left(30x^2-4x\right)=2004\left(\sqrt{30060x+1}+1\right)\)
\(\Leftrightarrow5\left(15x^2-2x\right)=668\left(\sqrt{30060x+1}+1\right)\)
\(\Leftrightarrow75x^2-10x-1340008=668\left(\sqrt{30060x+1}-2005\right)\)
\(\Leftrightarrow\left(5x+668\right)\left(15x-2006\right)=\frac{1338672\left(15x-2006\right)}{\left(\sqrt{30060x+1}+2005\right)}\)
\(\Leftrightarrow\left(15x-2006\right)\left(5x+668-\frac{1338672}{\left(\sqrt{30060x+1}+2005\right)}\right)=0\)
Tới đây tự làm tiếp nhá.
câu này chỉ cần đưa ề đối xúng là được thôi
\(\Leftrightarrow\left(15x\right)^2-30x=2004\sqrt{30060x+1}+2004\)
\(\Leftrightarrow\left(15x-1\right)^2=2004\sqrt{30060x+1}+2005\)
đặt \(\sqrt{30060x+1}=15y-1\)
\(\Leftrightarrow\hept{\begin{cases}\left(15x-1\right)^2=2004\left(15y-1\right)+2005\\\left(15y-1\right)^2=30060x+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(15x-1\right)^2=30060y+1\\\left(15y-1\right)^2=30060x+1\end{cases}}\)
đến đây thì lấy cái đầu trừ cái thứ 2 là ra
\(\left(x^2-4x+3\right)\left(x^2-6x+8\right)=8\)
\(\left(x^2-3x-x+3\right)\left(x^2-4x-2x+8\right)=8\)
\(\left[x\left(x-3\right)-1\left(x-3\right)\right]\left[x\left(x-4\right)-2\left(x-4\right)\right]=8\)
\(\left(x-1\right)\left(x-3\right)\left(x-2\right)\left(x-4\right)=8\)
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=8\)
\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-8=0\)
Đặt \(t=x^2-5x+4\)
\(t\left(t+2\right)-8=0\)
\(t^2+2t-8=0\)
\(t^2+4t-2t-8=0\)
\(t\left(t+4\right)-2\left(t+4\right)=0\)
\(\left(t+4\right)\left(t-2\right)=0\)
\(\orbr{\begin{cases}t+4=0\\t-2=0\end{cases}}\)
\(\orbr{\begin{cases}t=-4\\t=2\end{cases}}\)
\(\orbr{\begin{cases}x^2-5x+4=-4\\x^2-5x+4=2\end{cases}}\)
\(\orbr{\begin{cases}x^2-5x+8=0\left(ptvn\right)\\x^2-5x+2=0\end{cases}}\)
\(x^2-5x+2=0\)
\(\orbr{\begin{cases}x=\frac{5+\sqrt{17}}{2}\\x=\frac{5-\sqrt{17}}{2}\end{cases}}\)
\(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\) \(ĐK:x\ne-1;x\ne-3\)
\(\Leftrightarrow\frac{4x}{x^2+4x+3}-\frac{x^2+4x+3}{x^2+4x+3}=6\left[\frac{2\left(x+1\right)}{2\left(x+3\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)\left(x+3\right)}\right]\)
\(\Leftrightarrow\frac{4x-x^2-4x-3}{x^2+4x+3}=6\left[\frac{2\left(x+1\right)-x-3}{2\left(x+3\right)\left(x+1\right)}\right]\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=6\left[\frac{2x+2-x-3}{2\left(x^2+4x+3\right)}\right]\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=\frac{6\left(x-1\right)}{2\left(x^2+4x+3\right)}\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=\frac{3\left(x-1\right)}{x^2+4x+3}\)
\(\Leftrightarrow-x^2-3=3x-3\)
\(\Leftrightarrow-x^2-3x=0\)
\(\Leftrightarrow-x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\left(loại\right)\end{cases}}\)
Vậy x = 0
\(ĐK:x\ne\frac{-1}{2};x\ne\frac{-3}{2}\)
\(\frac{3}{2x+1}=\frac{6}{2x+3}+\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{3}{2x+1}-\frac{6}{2x+3}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{3\left(2x+3\right)-6\left(2x+1\right)}{\left(2x+1\right)\left(2x+3\right)}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{6x+9-12x-6}{4x^2+8x+3}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow-6x+3=8\)
\(\Leftrightarrow x=-\frac{5}{6}\)
Vậy ...
\(Taco:\)
\(\left(x+y\right)\left(y+z\right)=187\Leftrightarrow xy+xz+yy+yz=187\)
\(\left(y+z\right)\left(z+x\right)=154\Leftrightarrow yz+xy+zz+xz=154\)
\(\left(z+x\right)\left(x+y\right)=238\Leftrightarrow xz+zy+xx+xy=238\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)+\left(x+z\right)\left(x+y\right)+\left(y+z\right)\left(z+x\right)=579\)
\(\Leftrightarrow xy+zx+yy+yz+yz+xy+zz+xz+xz+zy+xx+xy=579\)
\(\Leftrightarrow3\left(xz+xy+yz\right)+x^2+y^2+z^2=579\)
\(\left(z+x\right)\left(x+y\right)-\left(x+y\right)\left(y+z\right)=51\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x^2-y^2=51\)
\(\left(z+x\right)\left(x+y\right)-\left(y+z\right)\left(x+z\right)=84\)
\(\Leftrightarrow\left(x+z\right)\left(x-z\right)=84\Leftrightarrow x^2-z^2=84\)
\(\Leftrightarrow y^2-z^2=33\)
đến đây tịt
Áp dụng công thức: \(A\left(x\right).B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=0\\B\left(x\right)=0\end{matrix}\right.\)
a) \(PT\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)
b) \(PT\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)
Vậy: \(S=\left\{3;20\right\}\)
c) Vì \(x^2+1\ge1>0\forall x\)
\(\Rightarrow4x+2=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)
d) \(PT\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)
a: =>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: =>(x-3)(x+20)=0
=>x=3 hoặc x=-20
c: =>4x+2=0
hay x=-1/2
d: =>2x+7=0 hoặc x-5=0 hoặc 5x+1=0
=>x=-7/2 hoặc x=5 hoặc x=-1/5
\(\left(2-x\right)\left(2x-1\right)+\left(4x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(2x-1\right)+\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2-x+2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\x+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-1\end{array}\right.\)
Vậy phương trình có tập nghiệm \(\left\{-1;\frac{1}{2}\right\}\)
(2-x)(2x-1)+(4x^2-4x+1)=0
Ta có: (2x-1)(2-x)+(2x-1)^2=0
(2x-1)(2-x+2x-1)=0
Sau đó bn tự lam nha tại vì mk làm bằng phone