Tìm x bt:x+10 cia hết cho x+5
Giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3},x+y+z=150\)
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{150}{6}=25\)
Có: \(\frac{x}{1}=25\Rightarrow x=25\)
Lại có: \(\frac{y}{2}=25\Rightarrow y=50\)
Và: \(\frac{z}{3}=25\Rightarrow z=75\)
Vì x,y,z tỉ lệ với 1,2,3
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{150}{6}=25\)
\(\Rightarrow\begin{cases}\frac{x}{1}=25\\\frac{y}{2}=25\\\frac{z}{3}=25\end{cases}\)\(\Rightarrow\begin{cases}x=25\\y=50\\z=75\end{cases}\)
Vậy x=15;y=50;z=75
Vì x\(⋮\)4;x\(⋮\)-6 => x\(\in\)BC(4;-6)
4=22
-6=2.(-3)
=>BCNN(4;-6)=22.(-3)=-12
=>BC(4;-6)=B(-12)={0;-12;-24;-36;...}
Vì -20 < x < -10
nên x = -12
\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)
Do \(x^2\left(x^2-x+5\right)\) chia hết \(x^2-x+5\)
\(\Rightarrow x^2-x+a\) chia hết \(x^2-x+5\)
\(\Rightarrow a=5\)
a)
tại\(x = 1 , GTBT A(x)\) là:
\(5.1 ^3 − 3.1 + 4\)
\(= 5.1 − 3.1 + 4\)
\(= 5 − 3 + 4\)
\(= 2 + 4\)
\(=6\)
Vậy tại\(x = 1 , GTBT A ( x ) là 6\)
a) 35 chia hết cho x => x thuộc Ư(35)={ 1;-1;5;-5;7;-7;35;-35}
=> x thuộc { 1;-1;5;-5;7;-7;35;-35}
đ) x+16 chia hết cho x+1 => (x+15+1 ) chia hết cho x+1
= > (x+1) chia hết cho (x+1) VÀ (x+5) chia hết cho (x+1)
=> (x+1) thuộc Ư(15) và x+1 phải lớn hơn hoặc = 1
Ư(15 ) = {1;3;5;15 }
bạn nêu ra từng th nha : vd như :
x+1=1=>x=0
tự làm nha , tk mk đi
`A=-10/(sqrtx+5)(x>=0)`
`x>=0=>sqrtx>=0`
`=>sqrtx+5>=5>0`
`=>10/(sqrtx+5)<=10/5=2`
`=>A>=-2`
Dấu "=" xảy ra khi `x=0`
Vậy GTNN `A=-2<=>x=0`
Ta có:\(\frac{x+10}{x+5}=\frac{x+5+5}{x+5}=1+\frac{5}{x+5}\)
\(\Rightarrow5⋮x+5\)
Hoặc \(x+5\inƯ\left(5\right)\)
Vậy Ư(5) là:[1,-1,5,-5]
Do đó ta có bảng sau:
Vậy x=-10;-6;-4;0
Giải:
Ta có:
\(x+10⋮x+5\)
\(\Rightarrow\left(x+5\right)+5⋮x+5\)
\(\Rightarrow5⋮x+5\)
\(\Rightarrow x+5\in\left\{\pm1;\pm5\right\}\)
+) \(x+5=1\Rightarrow x=-4\)
+) \(x+5=-1\Rightarrow x=-6\)
+) \(x+5=5\Rightarrow x=0\)
+) \(x+5=-5\Rightarrow x=-10\)
Vậy \(x\in\left\{-4;-6;0;-10\right\}\)