K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2015

P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)

2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)

2P=(5-1)(5+1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)

2P=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)

2P=(5^4-1)(5^4+1)(5^8+1)(5^16+1)

2P=(5^8-1)(5^8+1)(5^16+1)

2P=(5^16-1)(5^16+1)

2P=5^32-1

P=(5^32-1):2

8 tháng 11 2018

Ta có:

( 5 2 - 1).P = ( 5 2  – 1).12.( 5 2  + 1)( 5 4  + 1)( 5 8  + 1)( 5 16  + 1)

= 12.(  5 2  – 1).( 5 2  + 1)( 5 4 + 1)( 5 8  + 1)( 5 16 + 1)

= 12.(  5 4  - 1)(  5 4  + 1)(  5 8  + 1)( 5 16  + 1)

= 12.(  5 8  - 1)(  5 8  + 1)( 5 16  + 1)

= 12.(  5 16  - 1)( 5 16  + 1)

= 12.(  5 32  - 1)

28 tháng 12 2017

Ta có: \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Rightarrow P=\dfrac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{5^{32}-1}{2}\)

9 tháng 12 2021

(52-1)(52+1) lại biến mất khi đem xuống z ạ

31 tháng 8 2021

\(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\left(5^{128}-1\right)=2.5^{128}-2\)

 

c: Ta có: \(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^2-1\right)\left(5^2+1\right)\cdot\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{16}-1\right)\cdot\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{32}-1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{64}-1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{128}-1\right)\)

\(=2\cdot5^{128}-2\)

3 tháng 8 2023

`P= 8x^3 -4x^2 +2x+1+x^3+x^2-x+1`

`P=9x^3 -3x^2+x+2`

3 tháng 8 2023

\(\text{ P = (2x-1).4x^2+2x+1+(x+1)x^2-x+1}\)

\(\text{P =}\) \(\text{[(2x-1) . 4x^2 ]}\)\(\text{[(x+1) .x^2]}\)

\(\text{P = }\) \(\text{8x^3 - 4x^2 + 2x^3 + 2x^2 + 2x + 1 + x^3 - x + 1}\)

\(\text{P =}\) \(\text{(8x^3 + 2x^3 + x^3) + (-4x^2 + 2x^2) + (2x - x) + (1 + 1)}\)

\(\text{P =}\) \(\text{11x^3 - 2x^2 + x + 2}\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

ĐK: $a\geq 0; a\neq 1$

\(P=\left[\frac{\sqrt{a}(\sqrt{a}+1)}{(a+1)(\sqrt{a}+1)}+\frac{1}{a+1}\right].\frac{a+1}{\sqrt{a}-1}\) 

\(=\left(\frac{\sqrt{a}}{a+1}+\frac{1}{a+1}\right).\frac{a+1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{a+1}.\frac{a+1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

18 tháng 2 2021

P = \(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)DKXD: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

   = \(\sqrt{x}+\sqrt{x}\)

   = \(2\sqrt{x}\)

Vậy tại x ∈ ĐKXĐ thì P = \(2\sqrt{x}\)

Ta có: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}+\sqrt{x}\)

\(=2\sqrt{x}\)

20 tháng 10 2022

Bài4:

=>x(x^2+1)=0

>x=0

Bài 5: 

=>\(3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

3 tháng 3 2021

\(P=\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)

\(P=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x-1\right)}+\dfrac{\left(\sqrt{x}-1\right)}{\left(x-1\right)}+\dfrac{2}{x-1}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)

\(P=\dfrac{x+\sqrt{x}+\sqrt{x}-1+2}{x-1}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=\dfrac{x+2\sqrt{x}+1}{x-1}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)

\(P=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

Ta có: \(P=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\sqrt{x}+1\)

2 tháng 3 2021

\(P=\left(\dfrac{2\sqrt{x}+2}{x\sqrt{x}-\sqrt{x}+x-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1+\dfrac{1}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{2}{\left(x-1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{2}{\left(x-1\right)}-\dfrac{\left(\sqrt{x}+1\right)}{\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{1-\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)=-\left(\sqrt{x}+2\right)\)

2 tháng 3 2021

ĐKXĐ x\(\ge0;x\ne1\)

P=\(\left(\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1+\dfrac{1}{\sqrt{x}+1}\right)\)

P=\(\left(\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

P=\(\dfrac{2-\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

P=\(\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{-1}{\sqrt{x}+2}\)