giải phương trình :
\(6x\sqrt{2x^3+7}=6x^3+2x+22-4\sqrt{2x^3+7}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{2x^3+7}=a\)
=>6ax=3a^2+1+2x-4a
=>a=2x+1 hoặc a=1/3
=>2x^3+7=(2x+1)^2 hoặc 2x^3+7=1/3
=>\(x\in\left\{1;\dfrac{1-\sqrt{13}}{2};\sqrt[3]{-\dfrac{31}{9}}\right\}\)
\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\);
\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\)
....
Ta có 2x2 - 4x + 3 = 2(x - 1)2 + 1\(\ge1\)
3x2 - 6x + 7 = 3(x - 1)2 + 4 \(\ge4\)
=> VT \(\ge3\)
Ta lại có 2 - x2 + 2x = 3 - (x - 1)2 \(\le3\)
=> VP \(\le0\)
Dấu = xảy ra khi x = 1
\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)
Lời giải:
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)
b.
ĐKXĐ: $x\geq \frac{3}{2}$
PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)
\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)
\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
#)Giải :
Ta có :
\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\forall x\)
\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=4\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\Leftrightarrow\hept{\begin{cases}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4=2}\\3-\left(x-1\right)^2=3\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất là x = 1
b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:
\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)
Cái ngoặc to vô nghiệm.Do đó x = 1(TM)
Vậy...
P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn
\(6x\sqrt{2x^3+7}=6x^3+2x+22-4\sqrt{2x^3+7}\left(1\right)\) ĐK: \(\sqrt{2x^3+7}\ge0\)
Đặt \(\sqrt{2x^3+7}=a\ge0\)
\(\Rightarrow3a^2=6x^3+21\)
\(\Rightarrow\left(1\right)\Leftrightarrow6ax=3a^2+2x+1-4a\)
\(\Rightarrow\left(1\right)\Leftrightarrow3a^2+2x+1-4a-6ax=0\)
\(\Leftrightarrow\left(3a^2-4a+1\right)+2x\left(1-3a\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a-1\right)+2x\left(1-3a\right)=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a-1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{1}{3}\\a=1+2x\end{cases}}\)
TH1: \(a=\frac{1}{3}\)
\(\Rightarrow\sqrt{2x^3+7}=\frac{1}{3}\)
\(\Leftrightarrow x^3=\frac{-31}{9}\)
\(\Leftrightarrow x=\sqrt[3]{\frac{-31}{9}}\left(tm\right)\)
TH2: a=1+2x
\(\Rightarrow\sqrt{2x^3+7}=1+2x\left(x\ge\frac{-1}{2}\right)\)
\(\Leftrightarrow2x^3+7=4x^2+4x+1\)
\(\Leftrightarrow x^3-2x^2-2x+3=0\)
\(\Leftrightarrow x^3-x^2-x^2+x-3x+3=0\)
\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x^2-x-3=0\left(2\right)\end{cases}}\)
Ta có: \(\Delta\left(2\right)=13\)
=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\left(tm\right)\\x=\frac{1-\sqrt{13}}{2}\left(loai\right)\end{cases}}\)
Vậy ...