1. Tìm x,y,z nguyên sao cho:
x^3+xyz=957
y^3+xyz=795
z^3+xyz=579
2.Tìm các số tự nhiên x,y biết:
2^x-2^y=1984
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{\overline{xyz}}=x+y+z\)
\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)
Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)
\(\Rightarrow\overline{xyz}-m⋮9\)
Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)
\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)
\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)
Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9
Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)
\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)
Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)
Thử lại ta thấy không thỏa mãn,loại
Nếu \(m-1⋮9\left(KTM\right)\)
Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)
Thử lại ta thấy thỏa mãn
Vậy số đó là 512
ko vt lại đề
(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019
=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019
=> (z-1)(xy-y-x+1)=2019
=> (z-1)(z-1)(y-1)=2019
vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1
nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}
(x-1)(y-1)(z-1)= 673.3.1=2019
=> x-1=673=>x=674
=>y-1=3=>y=4
=> z-1 =1=>z=2
Vậy x=674,y=4,z=2
Bài 1:
Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho
Xét x3+xyz=x(x2+yz)=579 -->x lẻ.
Tương tự xét
y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ
Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài
Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho
Bài 2:
Ta có: VP=1984
Vì 2x-2y=1984>0 =>x>y
=>VT=2x-2y=2y(2x-y-1)
pt trở thành:
2y(2x-y-1)=26*31
\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)
Từ pt (1) =>y=6
Thay y=6 vào pt (2) đc:
2x-6-1=31 => 2x-6=32
=>2x-6=25
=>x-6=5 <=>x=11
Vậy x=11 và y=6