1/5 + 1/10 + 1/20 + 1/40 + .... +1/1280
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{5}+\dfrac{1}{10}+...+\dfrac{1}{1280}\)
= \(\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
= \(\dfrac{2}{5}-\dfrac{1}{1280}=\dfrac{511}{1280}\)
Giải:
\(\dfrac{1}{5}+\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{40}+...+\dfrac{1}{1280}\)
\(=\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{40}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
\(=\dfrac{2}{5}-\dfrac{1}{1280}\)
\(=\dfrac{511}{1280}\)
C = \(\frac{1}{5}\)+\(\frac{1}{10}\)+\(\frac{1}{20}\)+\(\frac{1}{40}\)+\(\frac{1}{80}\)+........+\(\frac{1}{1280}\)
2C = 2 . ( \(\frac{1}{5}\)+\(\frac{1}{10}\)+.......+\(\frac{1}{1280}\))
2C = \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\)
2C-C = ( \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+......+\(\frac{1}{1280}\)) - (\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\))
C . ( 2-1) = \(\frac{2}{5}\)
C = \(\frac{2}{5}\)
Vậy C = \(\frac{2}{5}\)
\(C=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+........+\frac{1}{1280}\)
\(\Rightarrow2C=2\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow2C=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+.............+\frac{1}{1280}\)
\(\Rightarrow2C-C=\left(\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+............+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow C=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{512}{1280}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{511}{1280}\)
Vậy C = \(\frac{511}{1280}\)
1/5 + 1/5 - 1/10 + 1/10 - 1/20 + 1/20 - 1/40 + ... + 1/640 - 1/1280
= 1/5 + 1/5 - 1/1280 = 511/1280
B=51+101+201+401+...+12801
�=1⋅15+12⋅15+14⋅15+18⋅15+...+1256⋅15B=1⋅51+21⋅51+41⋅51+81⋅51+...+2561⋅51
�=15⋅(1+12+14+18+...+1256)B=51⋅(1+21+41+81+...+2561)
Đặt �=1+12+14+18+...+1256A=1+21+41+81+...+2561
⇒2�=2+1+12+14+...+1128⇒2A=2+1+21+41+...+1281
⇒2�−�=2−1256⇒2A−A=2−2561
�=2−1256A=2−2561
Thay A vào B
có: �=15.(2−1256)=15⋅511256=5111280B=51.(2−2561)=51⋅256511=1280511
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(=\frac{\frac{1}{5}\left(1-\frac{1}{2^9}\right)}{\left(1-\frac{1}{2}\right)}\)
\(=\frac{2}{5}\left(1-\frac{1}{2^9}\right)\)
To chưa học dấu mu