Phân tích đa thức thành nhân tử :
a) (y3+8) +(y2-4)
b) x6-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
d) (y3 + 8) + ( y2 – 4) =(y3 + 23) + ( y2 – 22)
= (y + 2)(y2 – 2y + 4) + (y + 2)( y – 2)
= (y + 2)(y2 – 2y + 4 + y – 2) = (y + 2)(y2 – y + 2)
a) (5x - 3y)(x - 3y)(x + 3y).
b) 3(a – b + c) ( x + 6 y ) 2 .
c) (x-y-2m + n)(x-y + 2m-n)
\(a,x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right).\left(x-y+z\right)\)
\(b,x^3+y^3+2x^2-2xy+2y^2=\left(x^3+y^3\right)+2\left(x^2-xy+y^2\right)=\left(x+y\right).\left(x^2-2xy+y^2\right)+2.\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right).\left(x+y+2\right)\)
a) 16(12 t 2 +1).
b) Gợi ý x 3 + y 3 = ( x + y ) 3 - 3xy(x + y)
(x + y - z)( x 2 + y 2 + z 2 - xy + xz + yz).
b) \(\left(a^2+b^2\right)^2-4a^2b^2\)
\(=\left(a^2-2ab+b^2\right)\left(a^2+2ab+b^2\right)\)
\(=\left(a-b\right)^2\cdot\left(a+b\right)^2\)
c) \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
a) \(=6x^2y^2\left(6xy-7\right)\)
b) \(=3xy\left(x^3y+5x-6\right)\)
c) \(=\left(ax+ab\right)-\left(bx+x^2\right)=a\left(b+x\right)-x\left(b+x\right)=\left(a-x\right)\left(b+x\right)\)
d) \(=3\left(2x-1\right)-\left(2x-1\right)^2=\left(2x-1\right)\left(3-2x+1\right)=\left(2x-1\right)\left(4-2x\right)=2\left(2x-1\right)\left(2-x\right)\)
\(a,=6x^2y^2\left(6xy-7\right)\\ b,=3xy\left(x^3y+5x-6\right)\\ c,=x\left(a-x\right)-b\left(a-x\right)=\left(x-b\right)\left(a-x\right)\\ d,=3\left(2x-1\right)-\left(2x-1\right)^2=\left(2x-1\right)\left(3-2x+1\right)=2\left(2-x\right)\left(2x-1\right)\)
a) x⁶ + y⁶ = (x²)³ + (y²)³
= (x² + y²)(x⁴ - x²y² + y⁴)
b) x⁶ - y⁶
= (x³)² - (y³)²
= (x³ - y³)(x³ + y³)
= (x - y)(x² + xy + y²)(x + y)(x² - xy + y²)
a)
\(\left(y^3+8\right)+\left(y^2-4\right)\)
\(=\left(y+2\right)\left(y^2-2y+4\right)+\left(y-2\right)\left(y+2\right)\)
\(=\left(y+2\right)\left(y^2-2y+4+y+2\right)\)
\(=\left(y+2\right)\left(y^2+y+6\right)\)
b)
\(x^6-1=\)
\(=\left(x^3+1\right)\left(x^3-1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)\)