K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

\(=\frac{2a-2\sqrt{ab}+3\sqrt{ab}-3b}{2a-2\sqrt{ab}-3\sqrt{ab}+3b}=\frac{2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{\left(2\sqrt{a}+3\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(2\sqrt{a}-3\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{a}+3\sqrt{b}}{2\sqrt{a}-3\sqrt{b}}\)

17 tháng 6 2020

\(M=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\left(đkxđ:a,b\ge0;mau\ne0\right)\)[tự tìm cái sau :)) ]

\(VP=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2}.\sqrt{a}-\sqrt{3}.\sqrt{b}\right)}{a\sqrt{2}+\sqrt{3ab}}+\frac{\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-2\sqrt{3ab}}{a\sqrt{2}+\sqrt{3ab}}+\frac{2\sqrt{3ab}-3b}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-3b+2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

mình làm được đến đây , bạn làm được tiếp thì làm =))

17 tháng 6 2020

M=\(M=6\sqrt{B\hept{\begin{cases}\\\end{cases}}3,6}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bạn muốn nhanh thì cần ghi đầy đủ đề.

10 tháng 8 2021

\(\dfrac{2a+\sqrt{ab}-3b}{2a-5\sqrt{ab}+3b}\\ =\dfrac{2a-2\sqrt{ab}+3\sqrt{ab}-3b}{2a-2\sqrt{ab}-3\sqrt{ab}+3b}\\ =\dfrac{2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\\ =\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}+3\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-3\sqrt{b}\right)}\\ =\dfrac{2\sqrt{a}+3\sqrt{b}}{2\sqrt{a}-3\sqrt{b}}\)

Tick nha

29 tháng 6 2019

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)

17 tháng 9 2018

\(\dfrac{2a+\sqrt{ab}-3b}{2a-5\sqrt{ab}+3b}=\dfrac{2a-2\sqrt{ab}+3\sqrt{ab}-3b}{2a-2\sqrt{ab}-3\sqrt{ab}+3b}\)

\(=\dfrac{2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}+3\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-3\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{a}+3\sqrt{b}}{2\sqrt{a}-3\sqrt{b}}\)

17 tháng 9 2018

\(ĐK:a,b\ge0;a\ne b.\dfrac{2a+\sqrt{ab}-3b}{2a-5\sqrt{ab}+3b}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}+3\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-3\sqrt{b}\right)}=\dfrac{2\sqrt{a}+3\sqrt{b}}{2\sqrt{a}-3\sqrt{b}}\)

 A = (-2a + 3b - 4c) - (-2a - 3b - 4c)

  = -2a + 3b - 4c +2a + 3b + 4c

=6b

23 tháng 7 2021

\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)

\(A=-2a+3b-4x+2a+3b+4c\)

\(A=\left(2a-2a\right)+\left(4c-4c\right)+3b+3b\)

\(A=3b+3b\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Bài 1:

$14+\sqrt{40}+\sqrt{56}+\sqrt{140}=14+\sqrt{56}+(\sqrt{40}+\sqrt{140})$

=14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}=(12+2\sqrt{35})+2+(2\sqrt{10}+2\sqrt{14})$

$=(\sqrt{5}+\sqrt{7})^2+2+2\sqrt{2}(\sqrt{5}+\sqrt{7})$

$=(\sqrt{5}+\sqrt{7}+\sqrt{2})^2$

$\Rightarrow \sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{2}+\sqrt{5}+\sqrt{7}$

\(\Rightarrow A=\frac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=1\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:

a) ĐKXĐ: $a,b\geq 0$ và $a,b$ không đồng thời cùng bằng $0$

\(B=\frac{2a+2\sqrt{2}a-2\sqrt{3ab}+2\sqrt{3ab}-3b-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}=\frac{2a-3b}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}=\frac{(\sqrt{2a}-\sqrt{3b})(\sqrt{2a}+\sqrt{3b})}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}\)

\(=\frac{\sqrt{2a}-\sqrt{3b}}{\sqrt{a}}=\sqrt{2}-\sqrt{\frac{3b}{a}}\)

b)

\(a=1+3\sqrt{2}; 3b=30+11\sqrt{8}\Rightarrow \frac{3b}{a}=\frac{30+11\sqrt{8}}{1+3\sqrt{2}}=\frac{(30+11\sqrt{8})(1-3\sqrt{2})}{(1+3\sqrt{2})(1-3\sqrt{2})}\)

\(=\frac{102+68\sqrt{2}}{17}=6+4\sqrt{2}=(2+\sqrt{2})^2\)

\(\Rightarrow \sqrt{\frac{3b}{a}}=2+\sqrt{2}\)

\(\Rightarrow B=\sqrt{2}-(2+\sqrt{2})=-2\)

10 tháng 10 2017

28 tháng 6 2019

\(S=\frac{\left[\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right]^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(S=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^2\sqrt{a}+\left(\sqrt{b}\right)^2\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{b}-\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(S=\frac{\left(\sqrt{a}\right)^3-3\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{3\left(\sqrt{a}\right)^3-3a\sqrt{b}+3\sqrt{a}b}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\sqrt{a}\left[\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3\right]}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)