Vẽ n tia phân biệt chung gốc. Biết rằng trên hình vẽ có 36 góc. Giá trị của n là:
nhanh lên nha cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ một tia tạo với 29 tia còn lại thì sẽ được 29 góc
Như vậy có số góc là:
30.29=870 ( góc)
TRên thực tế mỗi tia được tính 2 lần vậy số góc có trên hình vẽ là:
\(\frac{870}{2}=435\) (góc)
Từ công thức:Cho n tia chung gốc,ta vẽ được \(\frac{n.\left(n+1\right)}{2}\) góc
=>\(\frac{n.\left(n+1\right)}{2}=36\)
=>n.(n+1)=36.2
=>n.(n+1)=72
=>n.(n+1)=8.9
=>n=8
n tia chung gốc suy ra hình vẽ có n(n-1)/2 = 36 góc
n(n-1) =72 = 8*9
Vậy n = 9
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
a) Có n tia chung gốc. \(\rightarrow\)Có: \(\frac{n\left(n+1\right)}{2}\)(góc)
Lại có: \(\frac{n\left(n+1\right)}{2}=28\)
\(\Rightarrow n\left(n+1\right)=56=7.8\)
\(\Rightarrow n=7\)
Vậy \(n=7\)
b) Gọi số tia chung gốc ban đầu là n tia. \(\rightarrow\)Sau khi vẽ thêm 1 tia, tổng số tia chung gốc là n+1 tia
Ta có: \(\frac{\left(n+1\right)\left(n+2\right)}{2}-\frac{n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2\right)-n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2-n\right)}{2}=9\)
\(\frac{2\left(n+1\right)}{2}=9\)
\(n+1=9\)
\(n=8\)
Vậy \(n=8\)
Từ công thức tính số góc tạo thành từ n tia là: n.(n - 1)/2
Theo đầu ta có số góc là 36 nên : n.(n - 1)/2 = 72
=> n.(n - 1) = 72 = 9.8
Vậy n = 9
1 tia nối với (n-1) tia còn lại thì được (n-1) tia
Vậy có số góc là: n.(n-1)
TRên thực tế mỗi tia được tính 2 lần nên số góc thật là:
\(\frac{n.\left(n-1\right)}{2}\)
Theo đề bài ra thì: \(\frac{n\left(n-1\right)}{2}=36\)
=> n(n-1)=72
Vì n là số tự nhiên và n, n-1 là 2 số tự nhiên liên tiếp mà 72=8.9
=> n=9