K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

\(A=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{19.21}\)

\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{19.21}\right)\)

\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}\right)\)

\(=\frac{3}{2}\left(1-\frac{1}{21}\right)\)

\(=\frac{3}{2}\cdot\frac{20}{21}\)

\(=\frac{10}{7}\)

16 tháng 8 2016

\(A=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{19.21}\)

\(\Rightarrow A=3.\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\right)\)

\(\Rightarrow A=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)

\(\Rightarrow A=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{21}\right)\)

\(\Rightarrow A=\frac{3}{2}.\frac{20}{21}\)

\(\Rightarrow A=\frac{10}{7}\)

Vậy \(A=\frac{10}{7}\)

1 tháng 3 2020

Đặt tên bthuc là A

\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)

\(2A=1-\frac{1}{21}=\frac{20}{21}\)

=>\(A=\frac{20}{21}:2=\frac{10}{21}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{19}\right)=\frac{1}{2}.\left(\frac{18}{19}\right)\)

\(=\frac{9}{19}\)

26 tháng 12 2019

gọi biểu thức là A

ta có :

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}...\frac{1}{19.21}\)

=> 2A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}...\frac{2}{19.21}\)

2A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{21}\)

2A = 1 - \(\frac{1}{21}\)

2A = \(\frac{20}{21}\)

A = \(\frac{20}{21}:2=\frac{10}{21}\)

11 tháng 12 2018

tớ làm câu b thôi, câu a nhân 1/2 lên là đc 

\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)

p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)

3 tháng 4 2020

Ta có:\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)=\frac{1}{2}\left(1-\frac{1}{21}\right)=\frac{1}{2}.\frac{20}{21}=\frac{10}{21}\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)\(+...+\frac{1}{19.21}\)

=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{21}\right)\)

=\(\frac{1}{2}.\frac{20}{21}\)

=\(\frac{20}{42}=\frac{10}{21}\)

17 tháng 3 2018

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{19\cdot21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{19\cdot21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(1-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\cdot\frac{20}{21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{10}{21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{x}{14}=\frac{10}{21}-\frac{2}{-7}\)

\(\frac{x}{14}=\frac{16}{21}\)

\(\Rightarrow x\cdot=21=14\cdot16\)

\(\Rightarrow x\cdot21=224\)

\(\Rightarrow x=\frac{224}{21}\)

14 tháng 3 2016

cho x chạy từ 2 đến 20, công thức X^2/(x-1)(x+1) tổng là: 16549/840

13 tháng 3 2016

a) \(=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{61.64}\)

\(=3\left(\frac{1}{1}-\frac{1}{64}\right)\)

\(=\frac{189}{64}\)

b) \(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)

\(=\frac{1}{1}-\frac{1}{25}\)

\(=\frac{24}{25}\)

c) Chưa học tới

13 tháng 3 2016

b)1/1.5+1/5.9+1/9.13+...+1/21.25

=1/4.(4/1.5+4/5.9+4/9.13+4/21.25)

=1/4.(4-4/5+4/5-4/9+4/9-4/13+...+4/21-4/25)

=1/4.(4-4/25)

=1/4.(100/25-4/25)

=1/4.96/25

=24/25

20 tháng 9 2019

D = \(\frac{1}{54}-\frac{3}{1.3}-\frac{3}{3.5}-\frac{3}{5.7}-...-\frac{1}{79.81}\)

\(=\frac{1}{54}-\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{79.81}\right)\)

\(=\frac{1}{54}-\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{79.81}\right)\)

\(=\frac{1}{54}-\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{79}-\frac{1}{81}\right)\)

\(=\frac{1}{54}-\frac{3}{2}.\left(1-\frac{1}{81}\right)\)

\(=\frac{1}{54}-\frac{3}{2}.\frac{80}{81}\)

\(=\frac{1}{54}-\frac{40}{27}\)

\(=\frac{1}{54}-\frac{80}{54}\)

\(=\frac{79}{54}\)