K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

A=-(x^2-4x-2) =-(x-2)^2+6 =<6

Max A=6 khi x=2

B=-(x^2 -x-2)= -(x-1/2)^2+9/4=<9/4

Max B=9/4 khi x=1/2

 

1 tháng 8 2021

\(A=-\left(x^2-4x-2\right)=-\left(x^2-4x+4-6\right)=-\left(x-2\right)^2+6\le6\)

dấu"=" xảy ra<=>x=2

\(B=-\left(x^2-x-2\right)=-\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) dấu""=" xảy ra<=>x=1/2

1 tháng 9 2021

a)A=4(x+11/8)^2 -153/16

Min A=-153/16 khi x=-11/8

b)B=3(x-1/3)^2 -4/3

Min B=-4/3 khi x=1/3

1 tháng 9 2021

Bài 1:

a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)

\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)

b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)

Bài 2:

a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)

b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)

\(maxB=11\Leftrightarrow x=-2\)

13 tháng 12 2023

a: \(A=-x^2-4x-2\)

\(=-x^2-4x-4+2\)

\(=-\left(x^2+4x+4\right)+2\)

\(=-\left(x+2\right)^2+2< =2\forall x\)

Dấu '=' xảy ra khi x+2=0

=>x=-2

b: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}< =\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{3}{4}=0\)

=>\(x=-\dfrac{3}{4}\)

c: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-x^2-2x-1+9\)

\(=-\left(x^2+2x+1\right)+9\)

\(=-\left(x+1\right)^2+9< =9\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

d: \(D=-8x^2+4xy-y^2+3\)

\(=-8\left(x^2-\dfrac{1}{2}xy\right)-y^2+3\)

\(=-8\left(x^2-2\cdot x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2\right)+\dfrac{1}{2}y^2-y^2+3\)

\(=-8\left(x-\dfrac{1}{4}y\right)^2-y^2+3< =3\forall x,y\)

Dấu '=' xảy ra khi y=0 và x-1/4y=0

=>y=0 và x=0

13 tháng 12 2023

TY

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi. 

a) Ta có: \(A=4x^2+4x+2\)

\(=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1>0\forall x\)

b) Ta có: \(B=2x^2-2x+1\)

\(=2\left(x^2-x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)

c) Ta có: \(C=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x-3\right)^2-6< 0\forall x\)

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

18 tháng 12 2022

a: =x^2-6x+9+x^2-6x+9

=2(x-3)^2>=0

Dấu = xảy ra khi x=3

b: =-(x^2+4x+y^2-2y)

=-(x^2+4x+4+y^2-2y+1-5)

=-(x+2)^2-(y-1)^2+5<=5

Dấu = xảy ra khi x=-2 và y=1