Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b , BE là đường trung trực của đoạn thẳng AH
c , EK = EC
d , AE < EC
e , BE vuông góc với KC
f , Cho AB = 3cm , BC = 5cm . Tính Kc
Xét ΔABE và ΔHBE có:
\(\widehat{BAE}=\widehat{BHE}=90\) (gt)
BE:cạnh chung
\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)
=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)
b) Vì ΔABE=ΔHBE(cmt)
=> AB=BH ; AE=EH
=> B,E \(\in\) đường trung trực của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c) Xét ΔAEK và ΔHEC có:
\(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)
AE=EH(cmt)
\(\widehat{AEK}=\widehat{HEC}\)
=>ΔAEK=ΔHEC(g.c.g)
=>EK=EC
d) Xét ΔEHC vuông tại H(gt)
=> HE<EC
Mà: HE=AE(cmt)
=>AE<EC
d) Xét ΔHKC có:
KH,CA là hai đường cao
=> E là trực tâm của ΔBKC
=>BE là đường cao
=> AE vuông góc KC
a)
xét 2 tam giác vuông ABE và HBE có:
BE(chung)
góc ABE= góc CBE(gt)
=> ΔABE=ΔHBE(CH-GN)
b)
gọi giao của BE và AH là F
xét ΔABF và ΔHBF có:
AB=HB(theo câu a, ΔABE=ΔHBE)
BF(chung)
góc ABE=góc HBE(gt)
=> ΔABF=ΔHBF(c.g.c)
=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)
=> BE là đường trung trực của AH
c)
xét ΔAEK và ΔHEC có:
EA=EH(theo câu a, ΔABE=ΔHBE)
góc KAE=góc EHC=90º(gt)
góc AEK=góc CEH(2 góc đối đỉnh)
=>ΔAEK=ΔHEC(g.c.g)
=>EK=EC
d)
ta có ΔAEK vuông tại A
=> EK>AE
mà EK=EC(theo câu c)
=> AE<EC
e)
theo câu a, ta có: ΔABE=ΔHBE(CH-GN)
=>AB=HB
theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)
=> AK=HC
ta có: KB=KA+AB
CB=CH+HB
=>KB=CB
=>ΔKBC cân tại B
ta có:ΔKCB cân tại B có BE là đường phân giác
=>BE đồng thời là đường cao của ΔKBC
=>BE_|_KC
f)
áp dụng định lí py-ta-go ta có;
\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)
\(AC=\sqrt{16}=4\left(cm\right)\)
theo câu e; ta có ΔKBC cân tại B
=> BC=BK=5cm
AK=BC-AB=5cm-3cm=2cm
áp dụng định lí py-ta-go ta có:
\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)
\(KC=\sqrt{20}\left(cm\right)\)