Cho a bằng 5x1y.Thay x,y bằng chữ số thích hợp để A chia hết cho 2 và 3 Nhưng a chia 5 dư 4.(trình bày cách làm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(X=\overline{4a2b}\)
X chia hết cho 2;5 nên X chia hết cho 10
=>X có chữ số tận cùng là 0
=>b=0
=>\(X=\overline{4a20}\)
X chia hết cho 9
=>\(\left(4+a+2+0\right)⋮9\)
=>\(\left(a+6\right)⋮9\)
=>a=3
vậy: X=4320
Bài 2:
Đặt \(A=\overline{20a2b}\)
A chia hết cho 25 mà A có tận cùng là \(\overline{2b}\)
nên b=5
=>\(A=\overline{20a25}\)
A chia hết cho 9
=>\(2+0+a+2+5⋮9\)
=>\(a+9⋮9\)
=>\(a⋮9\)
=>\(a\in\left\{0;9\right\}\)
Bài 3:
Đặt \(B=\overline{3x57y}\)
B chia 5 dư 3 nên B có tận cùng là 3 hoặc 8(1)
B chia 2 dư 1 nên B có tận cùng là số lẻ (2)
Từ (1),(2) suy ra B có tận cùng là 3
=>y=3
=>\(B=\overline{3x573}\)
B chia hết cho 9
=>\(3+x+5+7+3⋮9\)
=>\(x+18⋮9\)
=>\(x\in\left\{0;9\right\}\)
Bài 5:
Vì số bút chì khi đem chia 5 hoặc 3 thì vừa hết số bút chì sẽ vừa chia hết cho 5; vừa chia hết cho 3
=>Số bút chì sẽ chia hết cho 15
mà số bút chì có nhiều hơn 20 chiếc và ít hơn 35 chiếc
nên số bút chì là 30 chiếc
9xy4 chia het cho 2 thi co so tan cùng là 4 roi
9xy4chia het cho 4 thi ta thay vao so 0 ( vi theo dau hieu chia het cho 4 thi 2 chu so tan cung chia het cho 4 thi chia het cho 4 nên
04 : 4 = 1)
9x04 chia het cho 8 thi ta thay vao so 1,3,5,7,9 ( vi theo dau hieu chia het cho 8 thi 3 chu so tận cùng chia hết cho 8 thi chia het cho 8
minh thay vao so 1 duoc 104 : 8 = 13)
vay so chia het cho 2 , 4 , 8 la so 9104
51xy chia 5 dư 4 =>y=4;9
mà 51xy chia hết cho 2 nên y=4
ta được 51x4
51x4 chia 3 dư 1
=>5+1+x+4 chia 3 dư
=>10+x chia 3 dư 1
=>x=3;6;9
vậy y=4 ; x thuộc {3;6;9}
Để a chia 5 dư 4 và a chia hết cho 2 thì y=4
=>\(a=\overline{5x14}\)
a chia hết cho 3
=>\(5+x+1+4⋮3\)
=>x+10 chia hết cho 3
=>\(x\in\left\{2;5;8\right\}\)
mà a là số tự nhiên có 4 chữ số khác nhau
nên loại số 5
=>\(x\in\left\{2;8\right\}\)
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Giải:
Vì số phải tìm chia cho 5 dư 3 nên chữ số tận cùng phải là 3 hoặc 8. Nhưng số đó phải chia hết cho 2 => ta chọn y = 8
Thay y vào ta có số : 702xl8 . Mà số đó phải chia hết 9 nên => 7 + 0 + 2 + x + l + 8 chia hết 9
=> x = 1 ; l = 0 hoặc x = 0 ; l = 1
Thay vào ta có số: 702108 hoặc 702018 . Nhưng vì số đó phải là số có 6 chữ số khác nhau => x = 1 ; l = 0 hoặc x = 0 ; l = 1 (loại)
=> x = 9 ; l = 1 hoặc x = 1 ; l =9 => Ta có số : 702198 hoặc 702918 (tm)
Vậy ta có 2 đáp số : ......tự ghi nhá!