Cho tam giác ABC. M nằm trong tam giác đó. CMR: góc BMC= ABM+ACM+BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Từ A kẻ đường thẳng đi qua M cắt BC tại H
Ta có:\(\widehat{BAM}+\widehat{ABM}=\widehat{BHM}\) (tính chất góc ngoài của ΔABM)
Ta có:\(\widehat{MAC}+\widehat{ACM}=\widehat{CMH}\) (tính chất góc ngoài của ΔACM)
\(\Rightarrow\widehat{BAM}+\widehat{ABM}+\widehat{MAC}+\widehat{ACM}=\widehat{CMH}+\widehat{BHM}\)
\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=\widehat{BMC}\left(đpcm\right)\)
Xét tam giác ABC: \(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180\Rightarrow\widehat{BAC}=180-\widehat{BCA}-\widehat{ABC}\)
\(=180-\left(\widehat{BCM}+\widehat{ACM}\right)-\left(\widehat{ABM}+\widehat{CBM}\right)\)
\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=180-\widehat{BCM}-\widehat{CBM}\)
Xét tam giác BMC: \(\widehat{BMC}+\widehat{CBM}+\widehat{BCM}=180\Leftrightarrow\widehat{BMC}=180-\widehat{BCM}-\widehat{CBM}\)
Vậy \(\widehat{BMC}=\widehat{BAC}+\widehat{ABM}+\widehat{ACM}\)
Xét △ABM có BME là góc ngoài tại đỉnh M nên BME=MBA+MAB
CME=MAC+MCA
Vậy BME+CME=MBA+MAB+MAC+MCA
-> BMC=MBA+BAC+MCA
kì , mk lm mà sao nó k ra j hết?????