K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

a) \(\dfrac{a^6+b^6}{2}\ge3a^2b^2-4\)

\(\Leftrightarrow a^6+b^6\ge6a^2b^2-8\)

\(\Leftrightarrow a^6+b^6+8\ge6a^2b^2\)

Áp dụng BĐT Cauchy, ta có:

\(a^6+b^6+8\ge3\sqrt[3]{a^6.b^6.8}=6a^2b^2\)

Vậy ta có đpcm

b) Tương tự

15 tháng 10 2017

mình cũng vừa ra xong nhưng cũng cảm ơn bạn

21 tháng 11 2016

a/ a3 - b3 \(\ge\)3a2b - 3ab2

<=> a3 - b3 - 3ab(a - b) \(\ge0\)

<=> (a - b)3 \(\ge0\)(đúng)

b/ \(a^2+b^2+c^2\ge a+b+c-\frac{3}{4}\)

\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

=> ĐPCM

21 tháng 11 2016

lần sau gõ từ với ko có mất thời gian bn ký hiệu \(\gamma\) ng` ta hiểu thành kí hiệu tia Gamma thì sao

20 tháng 8 2020

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được 

\(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\)

Ta lại có  \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)

Do đó ta được \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{a^2+b^2+c^2}{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

p/s: check

31 tháng 12 2019

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}a^2b+\frac{1}{b}\ge2\sqrt{\frac{a^2b}{b}}=2a\\b^2c+\frac{1}{c}\ge2\sqrt{\frac{b^2c}{c}}=2b\\c^2a+\frac{1}{a}\ge2\sqrt{\frac{c^2a}{a}}=2c\end{cases}}\)

\(\Rightarrow a^2b+b^2c+c^2a+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(a+b+c\right)\)

\(\frac{\Rightarrow1}{2}\left(a^2b+b^2c+c^2a+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a+b+c\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

31 tháng 12 2019

\(a^2b+\frac{1}{b}-2a\ge2\sqrt{\frac{a^2b}{b}}-2a=0\)\(\Leftrightarrow\)\(\frac{1}{2}\left(a^2b+\frac{1}{b}\right)\ge a\)

phần còn lại mình dành cho bạn :) 

20 tháng 3 2018

a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)

b)\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)

1 tháng 8 2016

(a,b)=1980,2100

[a,b]=1980,2100

(a,b)=[a,b]

2 tháng 1 2018
naneun neoleul salanghae.
1 tháng 4 2018

1. áp dụng BĐT cô-si:

\(\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}\ge2\sqrt{\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}}=2\sqrt{\frac{c+ab}{\frac{8}{9}}}\)

Tương tự: \(\frac{a+bc}{b+c}+\frac{b+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+bc}{\frac{8}{9}}}\) và \(\frac{a+ac}{a+c}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt[]{\frac{b+ac}{\frac{8}{9}}}\)

cộng vế theo vế :M= \(\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}+\frac{a+b}{\frac{8}{9}}+\frac{b+c}{\frac{8}{9}}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+b+c+ab+bc+ac}{\frac{8}{9}}}\)(1)

mà a+b+c=1 và \(ab+bc+ac\le\frac{1}{3}\) ( tự chứng minh từ \(a^2+b^2+c^2\ge ab+bc+ac\) =>.....)

thay vào(1) => đpcm

1 tháng 4 2018

cái chỗ \(2\sqrt{\frac{c+ab}{a+b}.\frac{a+b}{\frac{8}{9}}}\) là nhân chứ không phải cộng nha

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]