Tổng các lũy thừa bậc ba của 3 số hữu tỉ là -1009. Biết tỉ số giữa số thứ nhất và số thứ 2 là \(\frac{2}{3}\) , giữa số thứ nhất và số thứ ba là \(\frac{4}{9}\) . Tìm các số đó.( tính xong nhớ thử lại) ( hình như áp dug dãy tỉ số bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này tui mới làm xong nề nhưng đề thì bạn có viết thiếu rùi.Thôi kiểm tra lại đi nha. Mà hình như tổng lũy thừa bậc ba của ba số hữu tỉ là -1009 mà.
Gọi số thứ nhất là a
=> Số thứ hai là 3/2a
Số thứ 3 là 9/4a
Vì tổng các luỹ thừa bậc 3 của 3 số nguyên là -1009, nên ta có:
\(a^3+\left(\dfrac{3}{2}a\right)^3+\left(\dfrac{9}{4}a\right)^3=-1009\\ \Leftrightarrow a^3+\dfrac{27}{8}a^3+\dfrac{729}{64}a^3=-1009\\ \Leftrightarrow\dfrac{1009}{64}a^3=-1009\\ \Leftrightarrow\dfrac{a^3}{64}=-1\\ \Leftrightarrow\left(\dfrac{a}{4}\right)^3=\left(-1\right)^3=-1\\ \Leftrightarrow\dfrac{a}{4}=-1\\ \Leftrightarrow a=-4\)
Vậy số thứ nhất là 4, số thứ hai là 6 và số thứ ba là 9.
gọi 3 số cần tìm là x,y,z
ta có x3 +y3+z3=-1009
x/y=2/3 => x/2=y/3 => x/4=y/6
x/z=4/9 => x/4=z/9
=> x/4+y/6+z/9=x^3/64+y^3/216+z^3/729 = -1009/1009=1
=> x=-4;y=-6;z=-9
Gọi số thứ nhất, số thứ hai, số thứ ba lần lượt là a,b,c
Theo đề, ta có: a/2=b/3 và a/4=c/9
=>a/4=b/6=c/9=k
=>a=4k; b=6k; c=9k
a^3+b^3+c^3=-1009
=>64k^3+216k^3+729k^3=-1009
=>k=-1
=>a=-4; b=-6; c=-9
Gọi số thứ nhất , số thứ hai , số thứ ba là a,b ,c .
Ta có:
a+b+c = -1009
a: b= 2/3 => a /2 = b/3 => a/4 = b/6 [1]
a : c= 4/9 => a/4 = c/9 [2]
Từ [1] , [2] => a/4 = b/6 = c/9 =[a+b+c] /[4+6+9] = -1009/19 [áp dụng tính chất dãy tỉ số bằng nhau]
=> a= -4036/19 ; b= -6054/19 ; c= -9081/19
Vậy .......
gọi 3 số cần tìm là x,y,z
ta có x3 +y3+z3=-1009
x/y=2/3 => x/2=y/3 => x/4=y/6
x/z=4/9 => x/4=z/9
=> x/4+y/6+z/9=x^3/64+y^3/216+z^3/729 = -1009/1009=1
=> x=-4;y=-6;z=-9
Gọi số thứ nhất , số thứ hai , số thứ ba là a,b ,c .
Ta có:
a+b+c = -1009
a: b= 2/3 => a /2 = b/3 => a/4 = b/6 [1]
a : c= 4/9 => a/4 = c/9 [2]
Từ [1] , [2] => a/4 = b/6 = c/9 =[a+b+c] /[4+6+9] = -1009/19 [áp dụng tính chất dãy tỉ số bằng nhau]
=> a= -4036/19 ; b= -6054/19 ; c= -9081/19
Vậy .......
gọi ba số hữu tỉ lần lượt là x,y,z và x3 + y3 + z3= -1009 Ta có
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{y}{4}=\frac{y}{6}\)(1)
\(\frac{x}{z}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{z}{9}\)(2)
Từ (1) và (2) ta suy ra: \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x^3}{64}=\frac{y^3}{216}=\frac{z^3}{729}=\frac{x+y+z}{64+216+729}=\frac{-1009}{1009}=-1\)
\(\Rightarrow\frac{x}{4}=-1\Rightarrow x=-4\)
\(\Rightarrow\frac{y}{6}=-1\Rightarrow y=-6\)
\(\Rightarrow\frac{z}{9}=-1\Rightarrow z=-9\)
Vậy ba số x,y,z lần lượt là: -4; -6 ;-9