Rút gọn: \(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{\left(a-2\right)\left(a-3\right)}\). minh khong chac dau nha. neu sai thi thoi.
a) \(A=\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)
\(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)
\(A=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}+\frac{1}{a+3}-\frac{1}{a+4}+\frac{1}{a+4}-\frac{1}{a+5}\)
\(A=\frac{1}{a}-\frac{1}{a+5}=\frac{a+5-a}{a\left(a+5\right)}=\frac{5}{a^2+5a}\)
b) Điều kiện: \(a\ne0;-1;-2;-3;-4;-5\)
\(A>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}-\frac{5}{6}>0\) \(\Leftrightarrow\frac{30-5a^2-25a}{30\left(a^2+5a\right)}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)
Kết luận: ....
ĐKXĐ: ...
a/ \(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)
\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+...+\frac{1}{a+4}-\frac{1}{a+5}\)
\(=\frac{1}{a}-\frac{1}{a+5}=\frac{5}{a\left(a+5\right)}\)
\(A>\frac{5}{6}\Rightarrow\frac{5}{a\left(a+5\right)}>\frac{5}{6}\)
\(\Leftrightarrow\frac{1}{a\left(a+5\right)}-\frac{1}{6}>0\Leftrightarrow\frac{6-a^2-5a}{a\left(a+5\right)}>0\)
\(\Leftrightarrow\frac{\left(1-a\right)\left(a+6\right)}{a\left(a+5\right)}>0\Rightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)
\(P=\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
\(=\frac{1}{a.\left(a-1\right)}+\frac{1}{\left(a-1\right).\left(a-2\right)}+\frac{1}{\left(a-2\right).\left(a-3\right)}+\frac{1}{\left(a-3\right).\left(a-4\right)}+\frac{1}{\left(a-4\right).\left(a-5\right)}\)
a) ĐKXĐ: \(a\ne0;1;2;3;4;5;6\)
b) \(P=\frac{1}{a-1}-\frac{1}{a}+\frac{1}{a-2}-\frac{1}{a-1}+\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}\)
\(A=\frac{1}{a-5}-\frac{1}{a}=\frac{a-\left(a-5\right)}{a.\left(a-5\right)}=\frac{5}{a.\left(a-5\right)}\)
c) \(a^3-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2a^2-2a+2a+2=0\)
\(\Leftrightarrow a^2.\left(a+1\right)-2a.\left(a+1\right)+2.\left(a+1\right)=0\)
\(\Leftrightarrow\left(a+1\right).\left(a^2-2a+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1=0\\a^2-2a+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\\left(a-1\right)^2=-1\left(loai\right)\end{cases}}}\)
Thay a=-1 vào P
\(P=\frac{5}{a.\left(a-5\right)}=\frac{5}{-1.\left(-1-5\right)}=\frac{5}{6}\)
\(M=\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\)
\(M=\frac{1}{\left(a-2\right)\left(a-3\right)}+\frac{1}{\left(a-3\right)\left(a-4\right)}+\frac{1}{\left(a-4\right)\left(a-5\right)}+\frac{1}{\left(a-5\right)\left(a-6\right)}\)
\(M=\frac{1}{a-2}-\frac{1}{a-3}+\frac{1}{a-3}-\frac{1}{a-4}+\frac{1}{a-4}-\frac{1}{a-5}+\frac{1}{a-5}-\frac{1}{a-6}\)
\(M=\frac{1}{a-2}-\frac{1}{a-6}\)
Đặt \(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)
Ta có:\(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\frac{a}{a+1}-\frac{a^2}{1+a^2}.\frac{1}{a^2+a}\)
\(A=\frac{a^2}{a^2-1}-\frac{a^3}{a+a^3+a^2+1}-\frac{a^2}{a+a^2+a^3+a^4}\)
a: ĐKXĐ: \(a\notin\left\{0;1;-1\right\}\)
\(A=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a^2}{a^2+1}\cdot\dfrac{a^2+1}{a\left(a+1\right)}\)
\(=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a}{a+1}\)
\(=\dfrac{a^2-a^2+a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a^2-1}\)
b: Để A=3 thì \(3a^2-3=a\)
\(\Leftrightarrow2a^2=3\)
hay \(a\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)
Đăỵ tổng là A
\(\Rightarrow A=\frac{1}{a^2-5a-4+10}+\frac{1}{a^2-7a-16+28}+\frac{1}{a^2-9a-25+45}+\frac{1}{a^2-11a-36+66}\)
\(\Rightarrow A=\frac{1}{\left(a^2-4\right)-\left(5a-10\right)}+\frac{1}{\left(a^2-16\right)-\left(7a-28\right)}+\frac{1}{\left(a^2-25\right)-\left(9a-45\right)}+\frac{1}{\left(a^2-36\right)-\left(11a-66\right)}\)
\(\Rightarrow A=\frac{1}{\left(a+2\right)\left(a-2\right)-5\left(a-2\right)}+\frac{1}{\left(a+4\right)\left(a-4\right)-7\left(a-4\right)}+\frac{1}{\left(a-5\right)\left(a+5\right)-9\left(a-5\right)}+\frac{1}{\left(a-6\right)\left(a+6\right)-11\left(a-6\right)}\)
\(\Rightarrow A=\frac{1}{\left(a-2\right)\left(a-3\right)}+\frac{1}{\left(a-4\right)\left(a-3\right)}+\frac{1}{\left(a-5\right)\left(a-4\right)}+\frac{1}{\left(a-6\right)\left(a-5\right)}\)
\(\Rightarrow A=\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}+\frac{1}{a-6}-\frac{1}{a-5}\)
\(\Rightarrow A=\frac{1}{a-6}-\frac{1}{a-2}\)
\(\Rightarrow A=\frac{\left(a-2\right)-\left(a-6\right)}{\left(a-6\right)\left(a-2\right)}=\frac{4}{\left(a-6\right)\left(a-2\right)}\)