Cho tam giac ABC co do dai ba canh la a, b, c va chu vi bang 1. Chung minh:
a2 +b2+c2 +4abc > 13/27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(a+b+c=2p\Rightarrow2p-a-b-c=0\)
mặt khác ta có: \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}=p\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\)
\(=\left(p-a+p-b+p-c\right)\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\) (*)
( vì \(2p-a-b-c=0\))
Đặt : \(p-a=x\left(x>0\right);p-b=y\left(y>0\right);p-c=z\left(z>0\right)\)
=>(*)<=>\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
mà \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) (tự chứng minh)
nên \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}\ge9\) =>đpcm
2 lần chu vi ABC là:
18,25+23,55+20,3=62,1(cm)
Chu vi tam giác ABC là:
62,1:2=31,05(cm)
Hai lần chu vi ABC là : 18 , 25 + 23 ,55 + 20 , 3 = 62,1 ( cm )
Chu vi tam giác ABC là : 62 ,1 : 2 = 31 , 05 ( cm )
Đáp số : 31 , 05 cm
cạnh AC là
18 / 3 * 2 = 12 cm
cạnh BC là
12 * 2 = 24 cm
chu vi hình tam giác là
24 + 12 + 18 = 54 cm
đ / s 54 cm
\(CtgABC/CtgA'B'C'=(4+5+6)/30 \)=1/2
Vì tam giác ABC đồng dạng vs tam giác A'B'C' nên
AB/A'B'=BC/B'C'=AC/A'C'=1/2
<=> 4/B'C'=5/B'C'=6/A'C'=1/2
=> A'B'=8cm
B'C'=10cm
A'C'=12cm
Lời giải:
Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)
\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)
Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)
Ta có:
\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)
Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)
Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)
Do đó ta có đpcm
Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.