Cho tam giác ABC có phương trình đường thẳng BC là \(x+4y=0\)\(x+4y=0\)x+4y=0.
Gọi H là trực tâm của tam giác ABC. Phương trình đường tròn ngoại tiếp tam giác HBC là: \(\left(x-1\right)^2+\left(y-2\right)^2=4\)
Tìm tọa độ điểm A,B,C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài toán này nghĩ mãi không ra, mình làm theo cách dời hình của lớp 11 nên không thấy hợp lý lắm.
bản thân \(x_B,x_A\)khá lẻ. Để tí nữa mình sửa lại cho chẵn để dẽ tính hơn.
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có cái này: \(\vec{HG}=\dfrac{2}{3}\vec{HO}\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{3}-3=\dfrac{2}{3}\left(x_O-3\right)\\\dfrac{8}{3}-2=\dfrac{2}{3}\left(y_O-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_O=1\\y_O=3\end{matrix}\right.\Rightarrow O=\left(1;3\right)\)
\(d\left(O;BC\right)=\dfrac{\left|1+2.3-2\right|}{\sqrt{5}}=\sqrt{5}\)
Phương trình trung trực BC: \(2x-y+1=0\)
\(\Rightarrow\) Trung điểm M của BC có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}2x-y+1=0\\x+2y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\Rightarrow M=\left(0;1\right)\)
Lại có \(\vec{AG}=\dfrac{2}{3}\vec{AM}\Rightarrow A=\left(5;6\right)\)
\(\Rightarrow R=OA=5\)
Phương trình đường tròn ngoại tiếp:
\(\left(x-1\right)^2+\left(y-3\right)^2=25\)
Cho mk hỏi là phương trình trung trực của BC tính như nào ạ
Cách làm
1. Từ phương trình 3 cạnh suy ra tọa độ 3 đỉnh của tam giác
2. Gọi D là chân đường phân giác trong góc A của ΔABC ⇒ \(\overrightarrow{BD}=\dfrac{AB}{AC}.\overrightarrow{DC}\)
3. Tâm đường tròn ngoại tiếp I của tam giác ABC là chân đường phân giác trong góc B của ΔABD
Kéo dài đường cao AH lần lượt cắt BC và đường tròn ngoại tiếp tam giác ABC tại hai điển E và K, ta dễ dàng chứng minh được E là trung điểm HK
Đường cao \(AH\perp BC\) nên có phương trình \(x-y=0\), E là giao điểm của BC và AH \(\Rightarrow E\left(4;4\right)\) và H là trung điểm \(HK\Rightarrow K\left(3;3\right)\), suy ra bán kính đường tròn ngoại tiếp tam giác ABC là \(R=IK=\sqrt{5}\)
\(\Rightarrow\) phương trình đường tròn là \(\left(x-5\right)^2+\left(y-4\right)^2=5,\left(C\right)\)
Vậy hai điểm B, C là nghiệm của hệ hai phương trình đường thẳng BC và đường tròn (C) \(\Rightarrow B\left(3;5\right);C\left(6;2\right)\) và đỉnh A là nghiệm hệ của đường cao AH và đường tròn (C) \(\Rightarrow A\left(6;6\right)\)
Diện tích tam giác ABC là :
\(S_{ABC}=\frac{1}{2}d\left(A,BC\right).BC=\frac{1}{2}\frac{\left|6+6-8\right|}{\sqrt{2}}.3\sqrt{2}=6\)