Cho tam giác ABC, các trung tuyến AM, BN, CP cắt nhau tại G. Qua C kẻ đườq // BN, cắt PN kéo dài tại F. Gọi E là trung điểm của NF.
CM: a, MN // CE
b, AE = PC
mn giúp e vs tói nay e cần r ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=9^2-4\cdot14=81-56=25\)
=>x-y=5 hoặc x-y=-5
b: \(x^2+y^2=\left(x+y\right)^2-2xy=9^2-2\cdot14=81-28=53\)
c: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot9\cdot14=351\)
Bạn tự vẽ hình nhé
a) Xét tam giác Abc có
PN // BC ,PN = 1/2 BC (PN là dường trung bình)
mà PN trùng PF hay NF
Suy ra BC // NF
Mà BN // CF
Trong tứ giác BNFC có :
BC là cạnh đối của NF
BN là cạnh đối của CF
Suy ra tứ giác BNFC là hình bình hành (có các cạnh đối song song)
b)Ta có : PN = 1/2 BC (cm a)
mà NF = BC (hai cạnh đối của hình bình hành BNFC)
Suy ra PN = 1/2NF hay PN = NE = EF
Suy ra PN + NE = NE + EF hay PE = NF
Suy ra BC = PE
Xét tứ giác PECB có
hai cạnh đối BC = PE (cmt)
Mà BC // PN hay BC // PE
Suy ra tứ giác PECB là hình bình hành (hai cạnh đối bằng nhau và song song)
Suy ra EC // PB và EC = PB (hai cạnh đối)
Vì P là trung điểm của AB nên AP = PB và AP trùng PB
Suy ra EC // AP và EC = AP
Vậy tứ giác PAEC là hình bình hành
bài này dễ mà
câu a dựa theo dấu hiệu 2 cặp cạnh đối song song vs nhau
câu b dựa theo tứ giác có 2 đg chéo cắt nhau tại t/đ của mỗi đg
a, Xét tam giác ABC có G là trọng tâm
=> \(PG=\frac{1}{3}PC\) ( t/c trọng tâm tam giác )
Xét tam giác ABG có GP và AF là các trung tuyến
Mà GP cắt AF tại I nên I là trọng tâm
=> \(PI=\frac{1}{3}PG=\frac{1}{3}\cdot\frac{1}{3}PC=\frac{1}{9}PC\) ( đpcm )
a: ΔABC cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
b: Xét ΔABC có
M là trung điểm của BC
MN//AB
=>N là trung điểm của AC
ΔAMC vuông taij M
mà MN là trung tuyến
nên MN=NA
c: Xét ΔABC có
BN.AM là trung tuyến
BN cắt AM tại O
=>O là trọng tâm