So sánh :
A = 1=2+22+23+24+.....+249 và 250
giúp tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 1 + 3 + 32 + 33 + ... + 32000
3.A = 3 + 32 + 33+ 33+... + 32001
3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)
2A = 3 + 32 + 33 + ... + 32001 - 1 - 3 - 32 - 33 - ... - 32000
2A = 32001 - 1
A = \(\dfrac{3^{2001}-1}{2}\)
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
Coi A=1+2+22+...+22024
B=5.22023
�=1+2+22+...+22022
A=1+2+22+...+22024�=1+2+22+...+22022
⇒2A=2+22+...+22024⇒2�=2+22+...+22023
⇒2A−A=22024−1⇒2�−�=22023−1
⇒A=22024−1⇒�=22023−1
⇒A<22024=2
.22023=2.22023<5.22023⇒�<22023=22.22021=4.22021<52021
⇒A<B
đề sai 1 chút ở số hạng của A
2A=2(1+2+22+...+249)
2A=2+22+...+250
2A-A=(2+22+...+250)-(1+2+22+...+249)
A=250-1 < 250
Vậy...