cho tam giác ABC , AB>AC ,Trên tia phân giác góc A lấy điểm D tùy ý . chúng minh rằng AB-AC>BD-CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H
trên AB lấy H sao cho AC = AH
xét tam giác AEC và tam giác AEH có : AE chung
^CAE = ^HAE do AE Là pg của ^BAC (Gt)
=> tam giác AEC = tam giác AEH (c-g-c)
=> EC = EH
xét tam giác EHB có HB > BE - EH
=> HB > BE - EC
có HB = AB - AH mà AH = AC (cv) => HB = AB - AC
=> AB - AC > BE - EC
2.Trên tia AB lấy M sao cho AM = AC mà AC < AB nên AM < AB => M nằm giữa A,B
ΔAEC,ΔAEMcó AE chung ; AC = AM ;^CAE=^MAE(AE là phân giác góc BAC)
⇒ΔAEC=ΔAEM(c.g.c)=> EC = EM
=> EB - EC = EB - EM < MB (bđt tam giác đối vớiΔEMB) mà AB - AC = AB - AM = MB
Vậy AB - AC > EB - EC
a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
nên ABEC là hình bình hành
=>BE=AC
b: Vì ABEC là hình bình hành
nên BE=AC
mà AC<AB
nên BE<AB
=>góc BAE<góc AEB
A B C E D 1 2 trên cạnh AB lấy E sao cho AE=AC
xét 2 tam giác AED và ACD có:
AC=AE ( gt)
\(\widehat{A_1}=\widehat{A_2}\) ( gt)
AD chung
\(\Rightarrow\DeltaÂED=\Delta ACD\) ( C.G.C)
nên DE=DC ( 2 cạnh tương ứng )
trong tam giác DEB , ta có:
BE>BD-DE=BD-DC
=> AB-AC>BD-DC