Tìm x biết:
\(\left(2x-3\right)^2\)= 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{3;-3\right\}\)
\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)
\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;5\right\}\)
3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
=> 3(x^2 + 4x + 4) + 4x^2 - 4x + 1 - 7(x^2 - 9) = 36
=> 3x^2 + 12x + 12 + 4x^2 - 4x + 1 - 7x^2 + 63 = 36
=> 8x + 76 = 36
=> 8x = -40
=> x = -5
a)\(\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow6x=36\Leftrightarrow x=6\)
a, đk x khác 0
<=> x^2 = 16 <=> x = 4 ; x = -4 (tm)
b, <=> 36x +252 = -360 <=> x = -17
c. đk x khác -1
<=> (x+1)^2 = 16
TH1 : x + 1 = 4 <=> x = 3 (tm)
TH2 : x + 1 = -4 <=> x = -5 (tm)
d, đk x khác 1/2
<=> (2x-1)^2 = 81
TH1 : 2x - 1 = 9 <=> x = 5 (tm)
TH2 : 2x - 1 = -9 <=> x = -4 (tm)
a: \(\Leftrightarrow x^2=16\)
hay \(x\in\left\{4;-4\right\}\)
b: =>x+7/15=-2/3
=>x+7=-10
hay x=-17
c: \(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow x+1\in\left\{4;-4\right\}\)
hay \(x\in\left\{3;-5\right\}\)
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
a) \(\left(3x-1\right)^2-3x\left(x-5\right)=21\)
\(\Leftrightarrow9x^2-6x+1-3x^2+15x=21\)
\(\Leftrightarrow6x^2+9x-20=0\)
\(\Leftrightarrow x\in\left\{-\sqrt{\frac{\sqrt{561}+9}{12}};\sqrt{\frac{\sqrt{561}-9}{12}}\right\}\)
b) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-2\right)=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
\(\Leftrightarrow8x+76=36\)
\(\Leftrightarrow8x=-40\)
\(\Leftrightarrow x=-5\)
Vì \(2x+1\) lẻ \(\Rightarrow2x+1\inƯ\) lẻ của 36
\(\Rightarrow2x+1=\left\{\pm1;\pm3\right\}\)
\(TH1:2x+1=-1\Rightarrow x=-1\) và y không tồn tại ( loại )
\(TH2:2x+1=1\Rightarrow x=0\) và y không tồn tại ( loại )
\(TH4:2x+1=-3\Rightarrow x=-2\) và y không tồn tại ( loại )
\(TH4:2x+1=3\Rightarrow x=1\) và y không tồn tại ( loại )
\(\left(2x-3\right)^2=36\)
\(\Leftrightarrow\left(2x-3\right)^2=6^2\)
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{9}{2}\)
Tìm x biết:
(2x−3)2= 36
=>(2x-3)2=62
=>2x-3=6
2x=9
x=9:2
x=4,5
Vậy x=4,5