K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Chọn D

20 tháng 3 2018

A n 2 + 3 C n n - 2 - C n + 1 3 = A n + 1 2 - 2 n

Điều kiện: n ∈ ℕ , n ≥ 2

Với điều kiện trên, (*) tương đương với:

n n - 1 + 3 6 n n - 1 - 1 6 n n - 1 n + 1 = n n - 1 - 2 n

⇔ 3 2 n - 1 - 1 6 n 2 - 1 = n + 1 - 2 ⇔ n = 8

Khi đó :

P x = 1 + 2 x - 3 x 3 4 = ∑ k = 0 4 C 4 k - 3 4 - k x 4 - k 3 1 + 2 x 1 2 k = ∑ k = 0 4 C 4 k - 3 4 - k x 4 - k 3 . ∑ C k i i = 0 k . 2 i x i 2

Hệ số của số hạng x ứng với

4 - k 3 + i 2 = 1 ⇔ 2 k = 3 i = 2

Vì i , k ∈ ℕ và i ≤ k ≤ 4 nên ta suy ra: k = 4, i = 2 hoặc k = 2 và i = 4.Như vậy hệ số của x trong khai triển là:

C 4 - 4 - 3 0 . C 4 2 . 2 2 + C 4 2 - 3 2 . C 2 0 . 2 0 = 78

Đáp án cần chọn là B

26 tháng 9 2018

21 tháng 12 2022

`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`

`<=>(2+1)^n=59049`

`<=>3^n=59049`

`<=>n=10 =>(2x^2+1/[x^3])^10`

Xét số hạng thứ `k+1:`

    `C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`

 `=C_10 ^k 2^[10-k] x^[20-5k]`

Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`

Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`

 

NV
5 tháng 11 2019

\(\left(x^{-\frac{2}{3}}+x^{\frac{3}{4}}\right)^{17}=\sum\limits^{17}_{k=0}C_{17}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{3}{4}}\right)^{17-k}=\sum\limits^{17}_{k=0}C_{17}^kx^{\frac{51}{4}-\frac{17}{12}k}\)

Số hạng thứ 13 \(\Rightarrow k=12\) là: \(C_{17}^{12}x^{-\frac{17}{4}}\)

b/ Xét khai triển:

\(\left(3-x\right)^n=C_n^03^n+C_n^13^{n-1}\left(-x\right)^1+C_n^23^{n-2}\left(-x\right)^2+...+C_n^n\left(-x\right)^n\)

Cho \(x=1\) ta được:

\(2^n=3^nC_n^0-3^{n-1}C_n^1+3^{n-2}C_n^2+...+\left(-1\right)^nC_n^n\)

À, đến đây mới thấy đề thiếu, biết rằng cái kia làm sao hả bạn?

6 tháng 11 2019

dòng phía dưới đó @Nguyễn Việt Lâm

27 tháng 11 2019

Đáp án D.

3 tháng 1 2018

Đáp án A.