K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 7 2021

a.

\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{\left(x-\sqrt{1+x^2}\right)\left(x+\sqrt{1+x^2}\right)}+2=0\)

\(\Leftrightarrow\dfrac{2x}{x^2-1-x^2}+2=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow x=1\)

b.

ĐKXĐ: \(x\ge a\)

Đặt \(\sqrt{x-a}=t\ge0\Rightarrow x=t^2+a\)

Pt trở thành:

\(2\left(t^2+a\right)-5at+2a^2-2a=0\)

\(\Leftrightarrow2t^2-5at+2a^2=0\)

\(\Leftrightarrow\left(2t-a\right)\left(t-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{a}{2}\\t=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-a}=\dfrac{a}{2}\\\sqrt{x-a}=2a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)

NV
23 tháng 1 2021

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

Đề bài: Giải phương trình sau trên tập số thực:\(\sqrt{5x^{2}-14x+9}-\sqrt{x^{2}-x-20}=5\sqrt{x+1}\)Bài giải: Điều kiện \(x\geqslant 5\)Chuyển vế và bình phương hai vế phương trình ta có\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-x-20 \right )\left ( x+1 \right )}\) \(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-4x-5 \right )\left ( x+4 \right )}\)Ta cần tìm các hằng số \(a,b\) sao cho\(a\left ( x^{2}-4x-5 \right )+b\left ( x+4 \right )=2x^{2}-5x+2\)Đồng nhất...
Đọc tiếp

Đề bài: Giải phương trình sau trên tập số thực:

\(\sqrt{5x^{2}-14x+9}-\sqrt{x^{2}-x-20}=5\sqrt{x+1}\)

Bài giải: Điều kiện \(x\geqslant 5\)

Chuyển vế và bình phương hai vế phương trình ta có

\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-x-20 \right )\left ( x+1 \right )}\)

 

\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-4x-5 \right )\left ( x+4 \right )}\)

Ta cần tìm các hằng số \(a,b\) sao cho

\(a\left ( x^{2}-4x-5 \right )+b\left ( x+4 \right )=2x^{2}-5x+2\)

Đồng nhất hai vế đẳng thức trên ta có hệ phương trình

\(\left\{\begin{matrix} a=2 & & \\ -4a+b=-5 & & \\ -5a+4b=2 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a=2 & & \\ b=3 & & \end{matrix}\right.\)

Đặt \(u=\sqrt{x^{2}-4x-5}; v=\sqrt{x+4}\), ta có phương trình

\(2a^{2}+3b^{2}=5ab\Leftrightarrow \left ( a-b \right )\left ( 2a-3b \right )=0\)

TH1: \(a=b\) thì \(x=\frac{5+\sqrt{61}}{2}\)

TH2: \(2a=3b\) thì \(x=8\)

Vậy nghiệm của phương trình là \(x=8;x=\frac{5+\sqrt{61}}{2}\)

1

đây mà là toán lp 2 á đùa tôi đấy à

30 tháng 6 2017

\(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\)

Đặt \(\sqrt{x-a}=b\ge0\)

\(\Rightarrow2b^2-5ab+2a^2=0\)

\(\Leftrightarrow\left(b-2a\right)\left(2b-a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\sqrt{x-a}\\\sqrt{x-a}=2a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)

30 tháng 6 2017

nếu bn đặt là b thì tại sao x bn lại cho là b2

NV
6 tháng 8 2021

a là nghiệm nên \(\sqrt{2}a^2+a-1=0\Rightarrow\sqrt{2}a^2=1-a\)

\(\Rightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)

\(\Rightarrow2a^4-2a+3=a^2-4a+4=\left(a-2\right)^2\)

Mặt khác \(1-a=\sqrt{2}a^2>0\Rightarrow a< 1\)

\(\Rightarrow\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2\left(a-2\right)^2}+2a^2=\sqrt{2}\left(2-a\right)+2a^2\)

\(=\sqrt{2}\left(\sqrt{2}a^2-a+2\right)=\sqrt{2}\left(1-a-a+2\right)=\sqrt{2}\left(3-2a\right)\)

\(\Rightarrow C=\dfrac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\dfrac{\sqrt{2}}{2}\)

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

NV
8 tháng 3 2022

a.

- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

- Với \(-1< m< 1\Rightarrow1-m^2< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

Vậy pt đã cho có nghiệm với mọi m

NV
8 tháng 3 2022

b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được

c. 

Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)

Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R

\(f\left(2\right)=4-5=-1< 0\)

\(f\left(3\right)=6-5=1>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m

Hay pt đã cho luôn luôn có nghiệm