cho x^2+y^2+z^2=2. chứng minh rằng: x+y+z =<2+xyz
giờ này rồi còn ai không giúp mình với. huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)
Use BĐT C-S ta có
x(1-yz)+y+z\(\le\sqrt{\left(x^2+\left(y+z\right)^2\right)\left(\left(1-yz\right)^2+1^2\right)}\)=\(\sqrt{\left(2+2yz\right)\left(2+\left(yz\right)^2-2yz\right)}\)
Vậy chỉ cần CM:\(\sqrt{\left(2+2yz\right)\left(2+\left(yz\right)^2-2yz\right)}\le2\)
\(\Leftrightarrow\left(1+yz\right)\left(2+\left(yz\right)^2-2yz\right)\le2\)
\(\Leftrightarrow\left(yz\right)^3\)\(\le\left(yz\right)^2\)
BĐT cuối cùng đúng vì:
2=x\(^2\)+y\(^2\)+z\(^2\)\(\ge\)y\(^2\)+z\(^2\)\(\ge\)2\(\left|yz\right|\)\(\Rightarrow\left|yz\right|\le1\)
\(\Rightarrow\left(yz\right)^3\)\(\le\)(yz)\(^2\)
BĐT đc chứng minh
đẳng thức xảy ra chẳng hạn 1 số =0 và 2 số =1