CMR: n2+n+1 không thể là số chính phương với n \(\in\) Z và n > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
Ta có:
1!+2!+3!+4!=37
Suy ra 1!+2!+3!+...+n! không là số chính phương. Vì A có chữ số tận cùng bằng 7, 1!+2!+3!+4! có chữ số tận cùng bằng 7 và từ 5!+6!+...+n! có chũ số tận cùng bằng 0.
Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
TC: n2 < n2 + n +1 <n2 +2n+1
Suy ra n2< n2 + n +1 <(n+1)2
Mà giữa hai số chính phương liên tiếp ko có số chính phương nào nên n2 + n +1 ko thê là số chính phương (đpcm)
Ta có: n2+n+1>n2
n2+n+1<n2+n+1+n=n2+2n+1=(n+1)2
=>n2<n2+n+1<(n+1)2
=>n2+n+1 không thể là số chính phương
Vì n2+n+1 nằm giữa bình phương của 2 số tự nhiên liên tiếp(n và n+1)
=>ĐPCM