K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

giai gium minh voi

 

2 tháng 12 2016

Ta có:
a/(1+b²) = a- ab²/(1+b²) ≥ a - ab/2 (do 1+b² ≥ 2b)
Tương tự ta có:
b/(1+c²) ≥ b- bc/2
c/(1+d²) ≥ c - cd/2
d/(1+a²) ≥ d - ad/2
Cộng vế với vế ta được:
VT = a/(1+b²) + b/(1+c²) + c/(1+d²) + d/(1+a²) ≥ (a+b+c+d) - (ab+bc+cd+da)/2
VT ≥ (a+b+c+d -ab+bc+cd+da)/2 + (a+b+c+d)/2
Ta có:
ab+bc+cd+da = (a+c)(b+d) ≤ [(a+b+c+d)/2]² = 4 = a+b+c+d
=> a+b+c+d ≥ ab+bc+cd+da
=> VT ≥ (a+b+c+d)/2 =2
Dấu = khi a=b=c=d=1

29 tháng 6 2021

12632t54s jsd

26 tháng 3 2020

Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)

Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:

zgta9hq.png

Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)

26 tháng 2 2023

8 tháng 8 2016

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

8 tháng 10 2016

dễ quá 

dễ quá

mình biêt s

làm đó

8 tháng 9 2016

\(\text{Tìm x:}\)

\(a.x\left(x-1\right)-3x+3x=0\)

\(x\left(x-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

\(b.3x\left(x-2\right)+10-5x=0\)

\(3x^2-6x+10-5x=0\)

\(3x^2-11x+10=0\)

\(3x^2-11x=-10\)(bn xem lại đề nhé)

\(c.x^3-5x^2+x-5=0\)

\(x^3-5x^2+x=5\)

\(d.x^4-2x^3+10x^2-20x=0\)


 

8 tháng 9 2016

bài 1:phân tích thành phân tử

  a> x^2-6x-y^2+9

= (x-3)^2 -y^2

= (x-3 -y) (x-3+y)

b>x^2-xy-8x+8y

= x(x-y) - 8(x-y)

= (x-8) (x-y)

c>25-4x^2-4xy-y^2

= 5^2 - (2x + y)^2 

= (5 - 2x -y) (5 +2x+y) 

d>xy-xz-y+z

= x(y-z) - (y-z)

= (x-1) (y-z)

e>x^2-xz-yz+2xy+y^2

= (x+y)^2 - z(x+y)

= (x+y-z) (x+y)

g>x^2-4xy+4y^2-z^2-4zt-4t^2

= (x-2y)^2 - (z + 2t)^2 

= (x-2y -x-2t) (x-2y + z +2t)

bài 2:tìm X bt 

a>x.(x-1)-3x+3x=0

x (x-1) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy x=0 và x=1

b>3x.(x-2)+10-5x=0

3x(x-2) - 5 (x-2)=0

(3x-5) (x-2) =0

\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)

c>x^3-5x^2+x-5=0

x^2 (x-5) + (x-5) =0

(x^2 +1)(x-5) =0

\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)

Vậy x=5

d>x^4-2x^3+10x^2-20x=0

x^3 (x-2) + 10x(x-2) =0 

(x^3 + 10x) (x-2) =0

x(x^2 + 10) (x-2) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)

Vậy x=0 và x=2

6 tháng 2 2022

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

2 tháng 3 2022

 mik chưa hiểu dòng thứ 2 bạn giải thích rõ hơn được ko

 

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1