Tính : 1x2+3x4+5x6+...+99x100 bằng 2 cách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
A = 1 x 2 + 2 x 3 + ....... + 10 x 11
3A = 1 x 2 x 3 + 2 x 3 x 3 + ..........+ 10 x 11 x 3
3A = 1 x 2 x (3-0) + 2 x 3 x (4-1) + .......... + 10 x 11 x (12 -9)
3A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ........... + 10 x 11 x 12 - 9 x 10 x 11
3A = (1 x 2 x 3 - 1 x 2 x 3) + ( 2 x 3 x 4 - 2 x 3 x 4) +............ + 10 x 11 x 12
3A = 10 x 11 x 12 = 1320
A = 1320 : 3 = 440
Gọi biểu thức trên là A, ta có :
A= 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300
A = 2 + ( 2+ 1).4 + ( 4 + 1)6 + … + (98 + 1).100
= 2 + 2.4 + 4 + 4.6 + 6 + … + 98.100 + 100
= (2.4 + 4.6 + … + 98.100 ) + (2 + 4 + 6 + … + 100)
= 98.100.102 : 6 + 102.50:2
= 166600 + 2550
= 169150
B x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
= 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
= 99x100x101
B = 99x100x101 : 3
= 333300
nhanh k minh
B= 1x2+3x4+5x6+...+99x100
=> Bx3= 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ...+ 99x100x3
=> Bx3= 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3)+...+99x100x(101-98)
=> Bx3= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 +4x5x6 - 3x4x5 +...+ 99x100x101 - 98x99x100
=> Bx3= 99x100x101
=> B= 99x100x101:3
=> B= 333300
B = \(\dfrac{2}{1\times2}\) + \(\dfrac{2}{2\times3}\)+ \(\dfrac{2}{3\times4}\)+...+ \(\dfrac{2}{99\times100}\)
B = 2 \(\times\) ( \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\)+ \(\dfrac{1}{3\times4}\)+....+ \(\dfrac{1}{99\times100}\))
B = 2 \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\))
B = 2 \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\))
B = 2 \(\times\) \(\dfrac{99}{100}\)
B = \(\dfrac{99}{50}\)