phân tích đa thức thành nhân tử
a) 9-(x-y)2
b)x2+6x+9-y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`9-x^2-2xy-y^2`
`=9-(x^2+2xy+y^2)`
`=3^2-(x+y)^2`
`=(3+x+y)(3-x-y)`
a: \(6x^2-3xy\)
\(=3x\cdot2x-3x\cdot y\)
\(=3x\left(2x-y\right)\)
b: \(x^2-y^2-6x+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
c: \(x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=x\left(x+6\right)-\left(x+6\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
Nếu tổng các hệ số trong đa thức bằng 0 thì đây thức có một nghiệm là 1, đa thức trên sẽ có một nghiệm là 1 nên đa thức có thể phân tích thành (x - 1) x a
Nếu tổng các hệ số bậc chẵn bằng tổng hệ số bậc lẻ thì đa thức có một nghiệm là -1
Ví dụ đa thức -x² + 5x + 6 có tổng hệ số bằng chẵn bằng -1 + 6 = 5 bằng hệ số bậc lẻ, đa thức trên sẽ có một nghiệm là -1 nên đa thức có thể phân tích thành (a + 1) x a
a. 6x² - 3xy = 3x x 2x - y
b. x^2 - y^2 - 6x + 9 = x² - 6x + 9 - y²( x - 3)^2 - y ^2 = x - 3 - y x (x - 3) + y
c. x² + 5x - 6 = x² - x + 6x - 6 = (x - 1) x (x + 6)
a: \(6x^2-3xy\)
\(=3x\cdot2x-3x\cdot y\)
=3x(2x-y)
b: \(x^2-y^2-6x+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
c: \(x^2+5x-6\)
=\(x^2+6x-x-6\)
=x(x+6)-(x+6)
=(x+6)(x-1)
a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)
\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)
\(=\left(3x-5y\right)\left(2x-y\right)\)
b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)
\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)
\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)
\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)
\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)
a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)
e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)
\(a,=3\left(x^2-8x+16\right)=3\left(x-4\right)^2\\ b,=5\left(x^2-1\right)=5\left(x-1\right)\left(x+1\right)\\ c,=\left(x+y\right)^2-9=\left(x+y+3\right)\left(x+y-3\right)\)
a) \(4x^2-9y^2+6x-9y\)
\(=\left(2x-3y\right)\left(2x+3y\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b) \(1-2x+2yz+x^2-y^2-z^2\)
\(=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-y+z-1\right)\left(x+y-z-1\right)\)
Tick hộ mình nha 😘
a: Ta có: \(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-y-3\right)\left(x+y-3\right)\)
b: Ta có: \(x^3+4x^2+4x\)
\(=x\left(x^2+4x+4\right)\)
\(=x\left(x+2\right)^2\)
c: Ta có: \(4xy-4x^2-y^2+9\)
\(=-\left(4x^2-4xy+y^2-9\right)\)
\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)
a: \(=x^2\left(x-2\right)\)
b: \(=\left(x-3\right)\left(2x-9\right)\)
\(a,=x^2\left(x-2\right)\\ b,=\left(x-3\right)\left(2x-9\right)\\ c,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
a) \(9-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
b) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+y+3\right)\left(x-y+3\right)\)