K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

A B C D 5CM 20CM

Áp dụng định lí : Ta có : BD = \(\frac{1}{3}\) AC

=> BD = \(\frac{1}{3}.20=\frac{20}{3}\)cm

 

29 tháng 7 2016

a) Vì BD là tia pg giác của \(\widehat{ABC}\) (gt)

=>\(\frac{AB}{BC}=\frac{AD}{DC}\)

=>\(\frac{AB}{AB+AC}=\frac{AD}{AD+DC}\)

=> \(\frac{AB}{AB+BC}=\frac{AD}{AC}\)

=>\(\frac{20}{20+5}=\frac{AD}{20}\)

=>\(AD=\frac{20\cdot20}{20+5}=16\) cm

Có: AC=AD+DC 

=>DC=AC-AD=20-16=4 cm

 

29 tháng 7 2016

Câu B thì sao hả bn ?

 

Áp dụng định lí : Trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực , đường cao.
=> AB= AC = 20cm AD vuông góc với BC và BD = CD
Vì BD + CD = BC BD + CD = 5cm
Mà BD = CD = 5/2 = 2,5 cm
Áp dụng định lí Py ‐ ta ‐ go cho tam giác vuông ABD có :
AB 2 = BD 2 + AD 2
=> 20 2 = BD 2 + 2,5 2
=> 400 = BD 2 + 6,25
=> BD 2 = 400 ‐ 6,25 = 393,75
=> BD = căn 393 ,75

#Học tốt#

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=18^2+20^2=724\)

hay \(BC=2\sqrt{181}cm\)

Vậy: \(BC=2\sqrt{181}cm\)

b: Xét ΔADB và ΔAEC có 

\(\widehat{A}\) chung

\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)

Do đó: ΔADB\(\sim\)ΔAEC

19 tháng 8 2021

giúp mk câu d ik ạ

 

23 tháng 3 2021

A B C D H

D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!

Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+62

BC2=36+36

BC2=72

⇒BC=\(\sqrt{72}\)

xét hai tam giác vuông AND và HBD có:

\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )

BD là cạnh chung

⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)

⇒AB=HB(2 cạnh tương ứng)

⇒ΔABH là tam giác cân

gọi D' là giao điểm của AH và BD ta có:

xét ΔABD' và ΔHBD' có:

\(\widehat{DBH}\) =\(\widehat{DBA}\)  (BC là tia phân giác của\(\widehat{HBA}\) )

AB=HB(ΔABH cân tại B)

\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)

⇒ ΔABD' = ΔHBD' (G-C-G)

⇒HD'=AD'(2 cạnh tương ứng)

vì  ΔABD' = ΔHBD' 

⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)

Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)

Từ (1)và(2) ⇒ D'B⊥AH(3)

Từ (1)và(3) ⇒BD là đường trung trực của AH

 

 

a: Xét ΔCAB có CA^2+CB^2=AB^2

nên ΔCAB vuông tại C

Xét ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*25=15*20=300

=>CH=12(cm)

b: góc BCD+góc ACD=90 độ

góc BDC+góc HCD=90 độ

mà góc ACD=góc HCD

nên góc BCD=góc BDC

=>ΔBDC cân tại B

c: BC^2+BD^2+CD^2

=BC^2+BC^2+CD^2

=2BC^2+CD^2

=2(BH^2+HC^2)+CH^2+HD^2

=2BH^2+3CH^2+DH^2

a: BC=25cm

b: Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A