Cho tam giác ABC cân tại A đường phân giác BD có BC = 5 AC= 20 cm. Tính độ dài BD
Giúp mk nhé pleee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BD là tia pg giác của \(\widehat{ABC}\) (gt)
=>\(\frac{AB}{BC}=\frac{AD}{DC}\)
=>\(\frac{AB}{AB+AC}=\frac{AD}{AD+DC}\)
=> \(\frac{AB}{AB+BC}=\frac{AD}{AC}\)
=>\(\frac{20}{20+5}=\frac{AD}{20}\)
=>\(AD=\frac{20\cdot20}{20+5}=16\) cm
Có: AC=AD+DC
=>DC=AC-AD=20-16=4 cm
Áp dụng định lí : Trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực , đường cao.
=> AB= AC = 20cm AD vuông góc với BC và BD = CD
Vì BD + CD = BC BD + CD = 5cm
Mà BD = CD = 5/2 = 2,5 cm
Áp dụng định lí Py ‐ ta ‐ go cho tam giác vuông ABD có :
AB 2 = BD 2 + AD 2
=> 20 2 = BD 2 + 2,5 2
=> 400 = BD 2 + 6,25
=> BD 2 = 400 ‐ 6,25 = 393,75
=> BD = căn 393 ,75
#Học tốt#
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=18^2+20^2=724\)
hay \(BC=2\sqrt{181}cm\)
Vậy: \(BC=2\sqrt{181}cm\)
b: Xét ΔADB và ΔAEC có
\(\widehat{A}\) chung
\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)
Do đó: ΔADB\(\sim\)ΔAEC
D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!
Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+62
BC2=36+36
BC2=72
⇒BC=\(\sqrt{72}\)
xét hai tam giác vuông AND và HBD có:
\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )
BD là cạnh chung
⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)
⇒AB=HB(2 cạnh tương ứng)
⇒ΔABH là tam giác cân
gọi D' là giao điểm của AH và BD ta có:
xét ΔABD' và ΔHBD' có:
\(\widehat{DBH}\) =\(\widehat{DBA}\) (BC là tia phân giác của\(\widehat{HBA}\) )
AB=HB(ΔABH cân tại B)
\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)
⇒ ΔABD' = ΔHBD' (G-C-G)
⇒HD'=AD'(2 cạnh tương ứng)
vì ΔABD' = ΔHBD'
⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)
Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)
Từ (1)và(2) ⇒ D'B⊥AH(3)
Từ (1)và(3) ⇒BD là đường trung trực của AH
a: Xét ΔCAB có CA^2+CB^2=AB^2
nên ΔCAB vuông tại C
Xét ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*25=15*20=300
=>CH=12(cm)
b: góc BCD+góc ACD=90 độ
góc BDC+góc HCD=90 độ
mà góc ACD=góc HCD
nên góc BCD=góc BDC
=>ΔBDC cân tại B
c: BC^2+BD^2+CD^2
=BC^2+BC^2+CD^2
=2BC^2+CD^2
=2(BH^2+HC^2)+CH^2+HD^2
=2BH^2+3CH^2+DH^2
a: BC=25cm
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)
Do đó: AD=7,5cm; CD=12,5(cm)
b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc ABD=góc DBC
nên góc ADI=góc AID
hay ΔAID cân tại A
Áp dụng định lí : Ta có : BD = \(\frac{1}{3}\) AC
=> BD = \(\frac{1}{3}.20=\frac{20}{3}\)cm