Timg giá trị lớn nhất -nhỏ nhất
a, \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
b, x - \(\sqrt{2x+1}\) + 4
c, x+4\(\sqrt{x}-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
\(M=3\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+4\right)^2+14\)
\(=3\left(x+2\sqrt{x}+1\right)-\left(x+8\sqrt{x}+16\right)+14\)
\(=3x+6\sqrt{x}+3-x-8\sqrt{x}-16+14\)
\(=2x-2\sqrt{x}+1\)
\(=2\left(x-4\sqrt{x}+4\right)+6\sqrt{x}-7\)
\(=2\left(\sqrt{x}-2\right)^2+6\sqrt{x}-7\ge2.0+6.\sqrt{4}-7=5\)
Dấu "=" \(x=4\)
Vậy GTNN của M là 4 <=> x = 4
\(\left\{{}\begin{matrix}xz=x+4\left(1\right)\\2y^2=7xz-3x-14\\x^2+y^2=35-z^2\left(3\right)\end{matrix}\right.\left(2\right)\)
Nhận thấy \(x=0\) không là nghiệm của (1) .
\(\rightarrow z=\dfrac{x+4}{x}\)(4)
Thế (1) vào (2) .
\(2y^2=7\left(x+4\right)-3x-14=4x+14\leftrightarrow y^2=2x+7\)(\(x\ge-\dfrac{7}{2}\)) (5)
Thế (4)(5) vào (3)
\(x^2+2x+7=35-\left(\dfrac{x+4}{x}\right)^2\)
\(\Leftrightarrow x^4+2x^3-27x^2+8x+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x^2+7x+4\right)=0\)\(\)
TH1 : \(x-4=0\Leftrightarrow x=4\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt{15}\\z=2\end{matrix}\right.\)
TH2 : \(x-1=0\Leftrightarrow x=1\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\z=5\end{matrix}\right.\)
TH3 : \(x^2+7x+4=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7+\sqrt{33}}{2}\left(TM\right)\\x=\dfrac{-7-\sqrt{33}}{2}\left(KTM\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{-7+\sqrt{33}}{2}\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt[4]{33}\\z=-\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
1) \(x^2+2x+1=\left(x+2\right)\sqrt[]{x^2+1}\left(1\right)\)
\(\Leftrightarrow x^2+2x+1=x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\left(x\ge-2\right)\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\right)^2\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x=x^2\left(x^2+1\right)+4\left(x^2+1\right)+4x\left(x^2+1\right)\)
\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+x^2+4x^2+4+4x^3+4\)
\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+4x^3+5x^2+4x+4\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt[]{3}\left(Tm.x\ge-2\right)\)
Vậy nghiệm của phương trình \(\left(1\right)\) là \(x=\pm\sqrt[]{3}\)
2) \(P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\)
Ta có :
\(\sqrt[]{x^2-2x+13}=\sqrt[]{x^2-2x+1+12}=\sqrt[]{\left(x-1\right)^2+12}\ge\sqrt[]{12}=2\sqrt[]{3},\forall x\in R\)
\(4\sqrt[]{x-3}\ge0,\forall x\ge3\)
\(\Rightarrow P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\ge\sqrt[]{4+12}+0=4\left(khi.x=3\right),\forall x\ge3\)
Vậy \(Min\left(P\right)=4\left(tại.x=3\right)\)
câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)
\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)
\(\Rightarrow\dfrac{1}{16}\le M\le61\)
\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)
câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)
\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)
\(\Rightarrow3\le M\le7\)
\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)
\(\Rightarrow M_{min}=-6\) khi \(x=2\)
4) điều kiện xác định \(-6\le x\le10\)
ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)
áp dụng bunhiacopxki dạng căn ta có :
\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)
\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)
\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)
\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)
\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
\(P=\frac{x+\sqrt{x}-(x+2)}{\sqrt{x}+1}:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-\sqrt{x}+\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(\sqrt{x}-2)(\sqrt{x}+2)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)
Với mọi $x\geq 0; x\neq 1$ thì $\sqrt{x}+2\geq 2$
$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$
$\Rightarrow P=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}$
Vậy $P_{\min}=\frac{-1}{2}$ khi $x=0$
c)đặt C= \(x+4\sqrt{x}-4=\left(x+4\sqrt{x}+4\right)-8\)
=\(\left(\sqrt{x}+2\right)^2-8\)
ta thấy : \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x>=0
=> \(\left(\sqrt{x}+2\right)^2-8\ge-4\)
=> GTNN của C=-4 khi x=0