Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến
P=(x2+x+1)(x2-1+1)(x4-x2+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đề sai, với \(x=0\Rightarrow A=4>0\)
b. Đề sai, với \(x=0\Rightarrow B=12>0\)
-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2
Ta có : -(x-4)2<= 0
suy ra: -(x-4)2-(y-2)2<=0 (dpcm)
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)
= m2 - 8m + 16 = ( m - 4 )2
Ta có: ( m - 4 )2 \(\ge\) 0
=> Pt luôn có nghiệm
b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9
= x12 + x22 + 2x1x2 - 2x1x2 - 9
= (x1 + x2)2 - 2x1x2 - 9
= (-m)2 - 2(2m - 4) - 9
= m2 - 4m + 8 - 9
= m2 - 4m - 1 = m2 - 4m + 4 - 5
= (m - 2)2 - 5
Xét (m - 2)2 \(\ge\) 0
=> (m - 2)2 - 5 \(\ge\) -5
Dấu " =" xảy ra khi m - 2 = 0
<=> m = 2
\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm
Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)
\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)
\(A=m^2-2\left(2m-4\right)-9\)
\(A=m^2-4m-1\)
\(A=\left(m-2\right)^2-5\ge-5\)
\(\Rightarrow A_{min}=-5\) khi \(m=-2\)
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)
\(=x^2-x-2-2x^2+3x+2x^2+4\)
\(=x^2+2x+2\)
\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)
Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Mấy câu còn lại làm tương tự nhé em^^