min F biết √x2-6x+9 + √x^2+14x+49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
d) \(\left(7-2x\right)^2=49\)
\(\Rightarrow\left(7-2x\right)^2=\left(\pm7\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7-7\\2x=7+7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
e) \(\left(9-x\right)^3=216\)
\(\Rightarrow\left(9-x\right)^3=6^3\)
\(\Rightarrow9-x=6\)
\(\Rightarrow x=9-6\)
\(\Rightarrow x=3\)
g) \(6^{x+2}+6^x=1332\)
\(\Rightarrow6^x\cdot\left(6^2+1\right)=1332\)
\(\Rightarrow6^x\cdot37=1332\)
\(\Rightarrow6^x=1332:37\)
\(\Rightarrow6^x=36\)
\(\Rightarrow6^x=6^2\)
\(\Rightarrow x=2\)
\(d,\left(7-2x\right)^2=49\)
\(\Leftrightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
\(e,\left(9-x\right)^3=216\)
\(\Leftrightarrow\left(9-x\right)^3=6^3\)
\(\Leftrightarrow9-x=6\)
\(\Leftrightarrow x=3\)
\(f,6^{x+2}+6^x=1332\)
\(\Leftrightarrow6^x\left(6^2+1\right)=1332\)
\(\Leftrightarrow6^x\cdot37=1332\)
\(\Leftrightarrow6^x=36\)
\(\Leftrightarrow6^x=6^2\)
\(\Leftrightarrow x=2\)
#Urushi
a) (x + 2)(x + 4). b) 2(x + 6)(x + l).
c) 3(3x + 5)(x + l). d) (6x -7y)(x + y).
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
a, 315+(125-x)=435
<=> 125 - x = 435 - 315
<=> 125 - x = 120
<=> x = 5
b, 6x-5=613
<=> 6x = 613 + 5
<=> 6x = 618
<=> x = 103
c, 128-3(x+4)=23
<=> 3(x +4 ) = 105
<=> x + 4 = 35
<=> x = 31
e, -x +8=17
<=> x = -9
a, 315+(125-x)=435
125-x=435-315=120
x=125-120=5
=>x=5
b,6x-5=613
6x=613+5=618
x=618:6=103
c, 128-3(x+4)=23
3(x+4)=128-23=105
x-4=105:3=35
x=35+4=39
Ý D NHẦM ĐẦU BÀI BẠN ƠI.
Đáp án A
Phương trình: 2 x 2 − 6 x + 1 = 1 4 x − 3
⇔ 2 x 2 − 6 x + 1 = 2 − 2 x − 3 ⇔ x 2 − 6 x + 1 = − 2 x + 6.
⇔ x 2 − 4 x − 5 = 0 → S = x 1 + x 2 = 4.
Đáp án A
Phương trình
2 x 2 − 6 x + 1 = 1 4 x − 3 ⇔ 2 x 2 − 6 x + 1 = 2 − 2 x − 3 ⇔ x 2 − 6 x + 1 = − 2 x + 6.
⇔ x 2 − 4 x − 5 = 0 → S = x 1 + x 2 = 4.