Tìm x biết:( \(\frac{4}{7}\))x .x= (\(\frac{4}{7}\))6
Giúp mình với mấy bạn ơi!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{4}:\dfrac{6}{x}=\dfrac{5}{4}\\ \dfrac{6}{x}=\dfrac{3}{4}:\dfrac{5}{4}\\ \dfrac{6}{x}=\dfrac{3}{5}\\ x=6:\dfrac{3}{5}\\ x=10\\ b,\left(x+\dfrac{7}{4}\right)\times\dfrac{2}{3}=6\\ x+\dfrac{7}{4}=6:\dfrac{2}{3}\\x+\dfrac{7}{4}=9\\ x=9-\dfrac{7}{4}\\ x=\dfrac{29}{4}\)
Ta có: 2x + 3y + 5z - 119 = 0
=> 2x + 3y + 5z = 119
\(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)
Vậy...
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)}{\sqrt{x}^3-8}-\frac{\left(x-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}^3-8}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right)\)\(:\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\frac{\sqrt{x}^3+2x+4\sqrt{x}-\sqrt{x}^3+2x+3\sqrt{x}-6-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}.\frac{\left(x+2\sqrt{x}+4\right)}{\sqrt{x}+7}\)
\(=\)\(\frac{\left(4x-16\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}=\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
Sai đề không ?
A= \(\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)-\left(x-3\right)\left(\sqrt{x}-2\right)-7\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\right)\) . \(\frac{x+2\sqrt{x}+4}{\sqrt{x}+7}\)
= \(\frac{x\sqrt{x}+2x+4\sqrt{x}-x\sqrt{x}+3\sqrt{x}-6+2x-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4x-16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
=\(\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4\left(\sqrt{x}+2\right)}{\sqrt{x}+7}\)
= \(\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)
#mã mã#
Ta có: \(\frac{4}{7}< \frac{x}{10}< \frac{5}{7}\)
Ta lại có: \(\frac{8}{14}< \frac{x}{14}< \frac{x}{10}< \frac{10}{14}\)
\(\Rightarrow\frac{8}{14}< \frac{9}{14}< \frac{9}{10}< \frac{10}{14}\)
Vậy giá trị của x là 9.
Ta có:
\(\frac{4}{7}< \frac{x}{10}< \frac{5}{7}\)
\(\Rightarrow\frac{40}{70}< \frac{7x}{70}< \frac{50}{70}\)
\(\Rightarrow40< 7x< 50\)
Vì \(7x⋮7\)
\(\Rightarrow7x\in\left\{42;49\right\}\)
\(\Rightarrow x\in\left\{6;7\right\}\)
Vậy: x = 6 hoặc x = 7
\(\frac{1}{2}\)x - \(\frac{1}{3}x=-4+7\)
\(x.\left(\frac{1}{2}-\frac{1}{3}\right)=3\)
\(x.\frac{1}{6}=3\)
\(x=\)\(3:\frac{1}{6}\)
\(x=3.\frac{6}{1}\)
\(x=18\)
1/2x + 4 = 1/3x + 7
=> 1/2x - 1/3x = 7 - 4
=> x.(1/2 - 1/3) = 3
=> x.1/6 = 3
=> x = 3 : 1/6
=> x = 3.6 = 18
Vậy x = 18
\(a,\Rightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\\ \Rightarrow x^3-9x=0\\ \Rightarrow x\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Rightarrow x^3-1=x^3-9x^2+2x^2+6\\ \Rightarrow7x^2=7\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Ko tồn tại x